Next Article in Journal
Choked Flow Characteristics of Subcritical Refrigerant Flowing Through Converging-Diverging Nozzles
Previous Article in Journal
Multiscale Compression Entropy of Microvascular Blood FlowSignals: Comparison of Results from Laser Speckle Contrastand Laser Doppler Flowmetry Data in Healthy Subjects
Article Menu

Export Article

Open AccessArticle
Entropy 2014, 16(11), 5796-5809; doi:10.3390/e16115796

Global Stability Analysis of a Curzon–Ahlborn Heat Engine under Different Regimes of Performance

1
Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas, Instituto Politécnico Nacional, Av. IPN 2580, L. Ticomán, México D.F. 07340, Mexico
2
Departamento de Formación Básica, Escuela Superior de Cómputo, Instituto Politécnico Nacional, Av. Miguel Bernard Esq. Juan de Dios Bátiz, U.P. Zacatenco, México D.F. 07738, Mexico
*
Authors to whom correspondence should be addressed.
Received: 27 August 2014 / Revised: 26 October 2014 / Accepted: 29 October 2014 / Published: 4 November 2014
(This article belongs to the Section Thermodynamics)
View Full-Text   |   Download PDF [1022 KB, uploaded 24 February 2015]   |  

Abstract

We present a global stability analysis of a Curzon–Ahlborn heat engine considering different regimes of performance. The stability theory is used to construct the Lyapunov functions to prove the asymptotic stability behavior around the steady state of internal temperatures. We provide a general analytic procedure for the description of the global stability by considering internal irreversibilities and a linear heat transfer law at the thermal couplings. The conditions of the global stability are explored for three regimes of performance: maximum power (MP), efficient power (EP) and the so-called ecological function (EF). Moreover, the analytical results were corroborated by means of numerical integrations, which fully validate the properties of the global asymptotic stability. View Full-Text
Keywords: heat engine; global stability analysis; regimes of performance; finite time thermodynamics heat engine; global stability analysis; regimes of performance; finite time thermodynamics
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Reyes-Ramírez, I.; Barranco-Jiménez, M.A.; Rojas-Pacheco, A.; Guzmán-Vargas, L. Global Stability Analysis of a Curzon–Ahlborn Heat Engine under Different Regimes of Performance. Entropy 2014, 16, 5796-5809.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Entropy EISSN 1099-4300 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top