Next Article in Journal
Entropy Principle and Galilean Relativity for Dense Gases, the General Solution without Approximations
Next Article in Special Issue
Methods of Evaluating Thermodynamic Properties of Landscape Cover Using Multispectral Reflected Radiation Measurements by the Landsat Satellite
Previous Article in Journal
New Climatic Indicators for Improving Urban Sprawl: A Case Study of Tehran City
Previous Article in Special Issue
Using Exergy to Correlate Energy Research Investments and Efficiencies: Concept and Case Studies
Entropy 2013, 15(3), 1014-1034; doi:10.3390/e15031014

Exergetic and Parametric Study of a Solar Aided Coal-Fired Power Plant

1,* , 1
1 North China Electric Power University, Beijing 102206, China 2 School of Mechanical Engineering, the University of Adelaide, Adelaide 5005, Australia
* Author to whom correspondence should be addressed.
Received: 28 November 2012 / Revised: 5 February 2013 / Accepted: 6 March 2013 / Published: 11 March 2013
(This article belongs to the Special Issue Exergy: Analysis and Applications)
Download PDF [731 KB, uploaded 24 February 2015]


A solar-aided coal-fired power plant realizes the integration of a fossil fuel (coal or gas) and clean energy (solar). In this paper, a conventional 600 MW coal-fired power plant and a 600 MW solar-aided coal-fired power plant have been taken as the study case to understand the merits of solar-aided power generation (SAPG) technology. The plants in the case study have been analyzed by using the First and Second Laws of Thermodynamics principles. The solar irradiation and load ratio have been considered in the analysis. We conclude that if the solar irradiation was 925 W/m2 and load ratio of the SAPG plant was 100%, the exergy efficiency would be 44.54% and the energy efficiency of the plant (46.35%). It was found that in the SAPG plant the largest exergy loss was from the boiler, which accounted for about 76.74% of the total loss. When the load ratio of the unit remains at 100%, and the solar irradiation varies from 500 W/m2 to 1,100 W/m2, the coal savings would be in the range of 8.6 g/kWh to 15.8 g/kWh. If the solar irradiation were kept at 925 W/m2 while the load ratio of the plant changed from 30% to 100%, the coal savings could be in the range of 11.99 g/kWh to 13.75 g/kWh.
Keywords: solar-aided coal-fired power plant; exergy; efficiency; solar energy solar-aided coal-fired power plant; exergy; efficiency; solar energy
This is an open access article distributed under the Creative Commons Attribution License (CC BY) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Share & Cite This Article

Further Mendeley | CiteULike
Export to BibTeX |
MDPI and ACS Style

Zhai, R.; Zhu, Y.; Yang, Y.; Tan, K.; Hu, E. Exergetic and Parametric Study of a Solar Aided Coal-Fired Power Plant. Entropy 2013, 15, 1014-1034.

View more citation formats

Related Articles

Article Metrics

For more information on the journal, click here


Cited By

[Return to top]
Entropy EISSN 1099-4300 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert