Next Article in Journal
Infrared Cloaking, Stealth, and the Second Law of Thermodynamics
Next Article in Special Issue
Electro-Kinetic Pumping with Slip Irreversibility in Heat Exchange of CSP-Powered Bio-Digester Assemblies
Previous Article in Journal
Quantum Theory, Namely the Pure and Reversible Theory of Information
Previous Article in Special Issue
Optimization of Two-Stage Peltier Modules: Structure and Exergetic Efficiency
Article Menu

Export Article

Open AccessArticle
Entropy 2012, 14(10), 1894-1914; doi:10.3390/e14101894

Utilizing the Exergy Concept to Address Environmental Challenges of Electric Systems

Faculty of Electrical Engineering, University of Craiova, Decebal Street 107, Craiova, 200440, Romania
Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa, Ontario, ON, L1H 7K4, Canada
Military Institutes of University Education, Hellenic Naval Academy, Piraeus, 18539, Greece
University of Medicine and Pharmacy of Craiova, Craiova, 200349, Romania
Author to whom correspondence should be addressed.
Received: 29 August 2012 / Revised: 20 September 2012 / Accepted: 27 September 2012 / Published: 11 October 2012
(This article belongs to the Special Issue Exergy: Analysis and Applications)
View Full-Text   |   Download PDF [349 KB, uploaded 24 February 2015]   |  


Theoretically, the concepts of energy, entropy, exergy and embodied energy are founded in the fields of thermodynamics and physics. Yet, over decades these concepts have been applied in numerous fields of science and engineering, playing a key role in the analysis of processes, systems and devices in which energy transfers and energy transformations occur. The research reported here aims to demonstrate, in terms of sustainability, the usefulness of the embodied energy and exergy concepts for analyzing electric devices which convert energy, particularly the electromagnet. This study relies on a dualist view, incorporating technical and environmental dimensions. The information provided by energy assessments is shown to be less useful than that provided by exergy and prone to be misleading. The electromagnet force and torque (representing the driving force of output exergy), accepted as both environmental and technical quantities, are expressed as a function of the electric current and the magnetic field, supporting the view of the necessity of discerning interrelations between science and the environment. This research suggests that a useful step in assessing the viability of electric devices in concert with ecological systems might be to view the magnetic flux density B and the electric current intensity I as environmental parameters. In line with this idea the study encompasses an overview of potential human health risks and effects of extremely low frequency electromagnetic fields (ELF EMFs) caused by the operation of electric systems. It is concluded that exergy has a significant role to play in evaluating and increasing the efficiencies of electrical technologies and systems. This article also aims to demonstrate the need for joint efforts by researchers in electric and environmental engineering, and in medicine and health fields, for enhancing knowledge of the impacts of environmental ELF EMFs on humans and other life forms. View Full-Text
Keywords: electric system; electromagnet; embodied energy; exergy; extremely low frequency electromagnetic field; magnetic force; mechanical work electric system; electromagnet; embodied energy; exergy; extremely low frequency electromagnetic field; magnetic force; mechanical work

Figure 1

This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Bulucea, C.A.; Rosen, M.A.; Nicola, D.A.; Mastorakis, N.E.; Bulucea, C.A. Utilizing the Exergy Concept to Address Environmental Challenges of Electric Systems. Entropy 2012, 14, 1894-1914.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Entropy EISSN 1099-4300 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top