Recent Advances in Terahertz Devices and Applications

A special issue of Micromachines (ISSN 2072-666X). This special issue belongs to the section "A:Physics".

Deadline for manuscript submissions: 31 October 2024 | Viewed by 1491

Special Issue Editors

School of Semiconductors and Physics, North University of China, Taiyuan 030051, China
Interests: metamaterials; terahertz devices; terahertz applications

E-Mail Website
Co-Guest Editor
1. Department of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
2. Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
Interests: terahertz imaging; single-pixel cameras; hyperspectral imaging; spatial light modulators

Special Issue Information

Dear Colleagues,

This Special Issue, titled “Recent Advances in Terahertz Devices and Applications”, explores the latest developments in the field of terahertz technology, focusing on innovations in materials,  design, process, measurement, and applications. A terahertz wave is an electromagnetic wave with a frequency ranging from 0.1 THz to 10 THz, which is between an infrared wave and a millimeter wave. Terahertz technology has a higher frequency and a wider bandwidth, and also provides higher capacity compared to 5G technology. Therefore, devices based on terahertz technology have become one of the new research hotspots  and  has great potential in areas such as military radar, medical detection, imaging, communication and sensing, and so on. Central theme of this Special Issue include the multifunctional optimization of . Here are some examples of the key advancements made within this field:

  • Metamaterials, which enable novel properties and functions not found in natural materials, leading to breakthroughs in high-performance terahertz device design;
  • Terahertz lasers, lenses, filter, antennas, and so on, which have the potential to improve terahertz spectrum and imaging  systems, safety inspection, medical devices, and bioinstrumentation;
  • Terahertz actuators, sensors, absorbers, filters, diodes, energy harversters, detectors, and other series of terahertz wave regulation functional devices, which can be used in terahertz communication systems.

Dr. Qiannan Wu
Dr. Rayko Ivanov Stantchev
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Micromachines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • metamaterials
  • terahertz devices
  • terahertz imaging
  • terahertz communication
  • terahertz biomedicine

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

9 pages, 872 KiB  
Communication
Terahertz Polarization Isolator Using Two-Dimensional Square Lattice Tellurium Rod Array
by Yong Wang, Yanqing Ai, Lin Gan, Jiao Zhou, Yangyang Wang, Wei Wang, Biaogang Xu, Wenlong He and Shiguo Li
Micromachines 2024, 15(6), 745; https://doi.org/10.3390/mi15060745 - 31 May 2024
Viewed by 85
Abstract
A novel terahertz polarization isolator using a two-dimensional square lattice tellurium rod array is numerically investigated at the interesting band of 0.22 THz in this short paper. The isolator is designed by inserting six hexagonal tellurium rods into a fully polarized photonic crystals [...] Read more.
A novel terahertz polarization isolator using a two-dimensional square lattice tellurium rod array is numerically investigated at the interesting band of 0.22 THz in this short paper. The isolator is designed by inserting six hexagonal tellurium rods into a fully polarized photonic crystals waveguide with high efficiency of −0.34 dB. The TE and TM photonic band gaps of the 7 × 16 tellurium photonic crystals are computed based on the plane wave expansion method, which happen to coincide at the normalized frequency domain from 0.3859(a/λ) to 0.4033(a/λ), corresponding to the frequency domain from 0.2152 to 0.2249 THz. The operating bandwidth of the tellurium photonic crystals waveguide covers 0.2146 to 0.2247 THz, calculated by the finite element method. The six hexagonal tellurium rods with smaller circumradii of 0.16a serve to isolate transverse electric waves and turn a blind eye to transverse magnetic waves. The polarization isolation function and external characteristic curves of the envisaged structure are numerically simulated, which achieves the highest isolation of −33.49 dB at the central frequency of 0.2104 THz and the maximum reflection efficiency of 98.95 percent at the frequency of 0.2141 THz. The designed isolator with a unique function and high performance provides a promising approach for implementing fully polarized THz devices for future 6G communication systems. Full article
(This article belongs to the Special Issue Recent Advances in Terahertz Devices and Applications)
12 pages, 8499 KiB  
Article
In-Plane Radiation of Surface Plasmon Polaritons Excited by Free Electrons
by Ping Zhang, Yin Dong, Xubo Li, Xinxin Cao, Youfeng Yang, Guohao Yu, Shengpeng Yang, Shaomeng Wang and Yubin Gong
Micromachines 2024, 15(6), 723; https://doi.org/10.3390/mi15060723 - 30 May 2024
Viewed by 204
Abstract
Surface plasmon polaritons (SPPs) have become a research hotspot due to their high intensity and subwavelength localization. Through free-electron excitation, a portion of the momentum of moving electrons can be converted into SPPs. Converting highly localized SPPs into a radiated field is an [...] Read more.
Surface plasmon polaritons (SPPs) have become a research hotspot due to their high intensity and subwavelength localization. Through free-electron excitation, a portion of the momentum of moving electrons can be converted into SPPs. Converting highly localized SPPs into a radiated field is an approach with the potential to aid in the development of a light radiation source. Reducing losses of SPPs is currently a critical challenge that needs to be addressed. The lifetime of SPPs in metal films is longer than that in metal blocks. Traditional optical gratings can transform SPPs into radiation to avoid the decay of SPPs in metal; however, they are created by etching metal films, so they tend to alter the dispersion characteristics of these films and will emit radiation in the direction perpendicular to the metal surface. This paper proposes an approach to converting the SPPs of a metal film excited by free electrons into a radiation field via lateral grating and obtaining in-plane radiation. We investigate the properties of SPP lateral radiation. The study of lateral radiation from metal films holds significant importance for SPP radiation sources and SPP on-chip circuit development. Full article
(This article belongs to the Special Issue Recent Advances in Terahertz Devices and Applications)
Show Figures

Figure 1

13 pages, 12245 KiB  
Article
Design of High-Gain Antenna Arrays for Terahertz Applications
by Xinran Ji, Yu Chen, Jing Li, Dian Wang, Yue Zhao, Qiannan Wu and Mengwei Li
Micromachines 2024, 15(3), 407; https://doi.org/10.3390/mi15030407 - 18 Mar 2024
Viewed by 930
Abstract
A terahertz band (0.1–10 THz) has the characteristics of rich spectrum resources, high transmission speed, strong penetration, and clear directionality. However, the terahertz signal will suffer serious attenuation and absorption during transmission. Therefore, a terahertz antenna with high gain, high efficiency, and wide [...] Read more.
A terahertz band (0.1–10 THz) has the characteristics of rich spectrum resources, high transmission speed, strong penetration, and clear directionality. However, the terahertz signal will suffer serious attenuation and absorption during transmission. Therefore, a terahertz antenna with high gain, high efficiency, and wide bandwidth is an indispensable key component of terahertz wireless systems and has become a research hotspot in the field of antennas. In this paper, a high-gain broadband antenna is presented for terahertz applications. The antenna is a three-layer structure, fed by a grounded coplanar waveguide (GCPW), using polytetrafluoroethylene (PTFE) material as the dielectric substrate, and the metal through-hole of the dielectric substrate forms a substrate-integrated waveguide (SIW) structure. The metal fence structure is introduced to reduce the coupling effect between the radiation patches and increase the radiation bandwidth and gain. The center frequency is 0.6366 THz, the operating bandwidth is 0.61–0.68 THz, the minimum value of the voltage standing wave ratio (VSWR) is 1.00158, and the peak gain is 13.14 dBi. In addition, the performance of the designed antenna with a different isolation structure, the length of the connection line, the height of the substrate, the radius of the through-hole, and the thickness of the patch is also studied. Full article
(This article belongs to the Special Issue Recent Advances in Terahertz Devices and Applications)
Show Figures

Figure 1

Back to TopTop