Keywordsdeoxynivalenol; epimer; polarity; Tri101; molecular; interactions; spores of Ganoderma lucidum; oxidative stress; aflatoxins; antioxidant capability; mycotoxin; patulin; biodegradation; Pichia caribbica; proteomics; intracellular and extracellular enzymes; Bacillus licheniformis CK1; zearalenone (ZEA); serum hormones; estrogen receptor (ER); post-weaning female piglets; curcumin; aflatoxin B1; CYP450; AFBO–DNA; chicks; aflatoxin B1; photodegradation product; TQEF-MS/MS; cell viability; furan rings; mycotoxin; toxigenic Fusarium; biological control; Trichoderma; modified mycotoxin; aflatoxin B1; aflatoxin biodegradation preparation; Bacillus subtilis ANSB060; ameliorating effects; growth performance; antioxidant function; residue; aflatoxins; biotransformation; enzymatic detoxification; laccase; mild technologies; food safety; mycotoxins mitigation; aflatoxin B1; aflatoxin-degrading enzyme; biodegradation; Bacillus shackletonii; purification; Sporobolomyces sp. IAM 13481; microbial patulin degradation; desoxypatulinic acid; ascladiol; aflatoxins; Aspergillus flavus; Corylus avellana; fatty acids; thermal treatment; Aflatoxin B1; Aspergillus flavus; hyssop; inhibition; oxidative stress; DBD; atmospheric pressure; low temperature plasma; mycotoxins; degradation; maize; aflatoxins; neutral electrolyzed water; detoxification; turkey; mycotoxins; biotransformation; degradation; enzymes; application; mycotoxin; detoxification; biodegradation; biotransformation; enzyme; microorganism identification; mycotoxin; trichothecene; deoxynivalenol; bioprospecting; detoxification; Fusarium; cold atmospheric pressure plasma technology; mycotoxins; physical decontamination; chemical decontamination; biological decontamination; patulin; mycotoxin; mitigation; decontamination; food and beverage; processing; n/a