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Figure 9. Size-resolved values of x forselected regions in: January (left); and July (right). See Figure 7
for the location of these regions.

It is interesting to note that the smallest x value is about 20%, so the classic “external mixture”
with ) approaching zero is not found anywhere in these examples. We want to emphasize again that
the x values for smaller sizes in polluted regions such as North East China and Central India may
be overestimated because our training data set does not include the process of nucleation. Including
nucleation is generally expected to create a more external mixture, since freshly nucleated (hygroscopic)
particles would co-exist with carbonacous particles in these environments.

4. Conclusions

This paper presents the first estimate of spatial distribution of aerosol mixing state over the
globe as quantified by the mixing state metric . We defined this metric to estimate the degree to
which hygroscopic and non-hygroscopic species are mixed on a per-particle basis, with xy = 0% being
completely externally mixed and xy = 100% being completely internally mixed. We obtained this
global estimate by training a machine-learning model of x on detailed particle-resolved box model
data, and then applying the model to GCM output to predict x globally.

In some parts of the globe, the aerosol appeared to be quite externally mixed, with x values as
low as 20%, suggesting that an external-mixing assumption is likely to be valid there. This was the
case for the size range below 150 nm in regions where biomass burning aerosol dominated, such as the
Amazon Basin, Central Africa, and Indonesia. In contrast, the mixing state index x reached values
of 90% for polluted regions in East Asia in July, indicating that an internally-mixed assumption is
appropriate for those regions, at least for the spatial resolution of the GCM that was used here. In much
of the globe, however, the aerosol mixing state was not clearly internally or externally mixed, which
may indicate that assuming either limiting case could lead to significant errors. Previous work by
Ching et al. [14] can be used to link the global maps of x values from this study with estimated errors
for CCN concentrations. For the x values between 30% and 100% found in this study, assuming an
internal mixture would introduce an overestimation in CCN concentrations of up to 50%, with the
error decreasing to a few percent for x larger than 80%. For x values lower than 20%, errors in CCN
concentration of up to 100% can occur, but these ) values did not occur in our study. The scenarios in
the study by Ching et al. [14] were focused on the aging of carbonaceous aerosol and and therefore did
not encompass the full range of conditions that might be encountered around the globe. Nevertheless,
they provide guidance of how the predicted distribution of x values relates to expected errors in CCN
predictions when assuming an internal mixture.

While the methodology used in this paper is effective at extrapolating high-detail simulation
output to the global scale, it is important to understand the limitations of such a method.
Roughly speaking, our model takes the GCM output variables in each grid cell and infers the
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mixing state x value from particle-resolved box model simulations with similar corresponding state
variables. This could deliver inaccurate x estimates if there are no similar box model scenarios,
if there are multiple box model scenarios that differ significantly in their x predictions; if the
comparison is inexact due to differences in the microphysics/chemistry models between the GCM
and PartMC-MOSAIC; or if the matching box model scenarios had significantly different histories and
therefore have misleading mixing states. For example, the lack of nucleation in the box model scenarios
may well lead to somewhat overpredicted ) values in the sizes up to 90 nm in polluted regions.
Additionally, we assumed a composition of our pre-existing particles in our training simulations,
which may influence our results presented here.

An important issue that should be addressed in future work is the question of end-to-end
verification and validation of the x predictions. This could be accomplished by performing
single-particle measurements in different locations, similar to what has been done in Healy et al. [15]
for a single location in Paris during the MEGAPOLIS campaign. Another possibility would be
to perform particle-resolved aerosol simulations within a 3D chemical transport model (at great
computational expense) to calculate y directly over small regions, and to compare these explicitly
calculated x values to x predicted with machine learning.

It will be straightforward to adapt our model training to predict x based on aerosol optical
properties, rather than hygroscopicity. This would answer the question of how absorbing and
non-absorbing aerosol species are mixed on a per-particle basis, which is important to capture the
absorption enhancement of black-carbon-containing aerosol [60,61]. The approach presented in
this paper could be generalized to other problems where particle-scale processes cannot directly be
simulated within the large-scale modeling framework, but for which accurate small-scale models exist.
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