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monophosphatase (IMP) to form inositol. IMP is also responsible for the dephosphorylation of
myo-inositol-4-phosphate (Ins4P) [10,11]. Free inositol could be linked to glycerophospholipid to generate
the basic inositol containing phospholipid, phosphatidylinositol (PtdIns), by phosphatidylinositol
synthase (PIS) [5]. The hydroxyl groups of PtdIns could be phosphorylated at the positions 3, 4, and 5
of the lipid head group sequentially by a series of PtdIns kinases. Unlike the animals, plants have
evolved only five phosphorylated isomers, including three PtdIns monophosphates (PtdIns3P, PtdIns4P,
PtdIns5P) and two PtdIns bisphosphates (PtdIns(3,5)P2, PtdIns(4,5)P2). The other two, PtdIns(3,4)P2

and PtdIns(3,4,5)P3, identified in animals, have not been found in plants [4,12].

Figure 1. Schematic representation of inositol phosphatases in the plant inositol (Ins) signaling
pathways under stress. It illustrated the network of the inositol phosphate (IP) and phosphoinositide
(PI) signaling pathway, together with the stress responding processes, such as the ABA
pathway, Ca2+ release, and ROS generation. The dashed arrows indicated the putative
pathways. Ins is soluble, whereas phosphatidylinositol (PtdIns) is bound to the membrane.
In the Ins signaling pathways, inositol(1,4,5)trisphosphate (Ins(1,4,5)P3, IP3), phytic acid (InsP6),
diacylglycerol (DAG), and phosphatidic acid (PA) are all signaling molecules. ABA—abscisic acid,
DGPP—diacylglycerolpyrophosphate, Glc6P—glucose-6-phosphate, IMP—inositol monophosphatase,
IPK—inositol polyphosphate multi kinase, MIPS—myo-inositol-3-phosphate synthase, P—phosphate,
PIP5K—PtIns4P 5-kinase, PI4K—phosphatidylinositol 4-kinase, PIS—phosphatidylinositol synthase,
PKC—protein kinase C, PLC—phospholipase C, PPx-InsPs—pyrophosphates, PTEN—phosphatase and
tensin homologue deleted on chromosome 10, PtdIns—phosphatidylinositol, ROS—reactive oxygen
species, SAC—suppressor of actin, 5PTases—inositol polyphosphate 5-phosphatases.

On the other hand, PtdIns4P and PtdIns(4,5)P2 can be hydrolyzed into diacylglycerol (DAG) and
the corresponding phosphoinositide phosphates (PtdInsPs) by phospholipase C (PLC) (Figure 1) [13].
DAG and inositol-1,4,5-trisphosphate (Ins(1,4,5)P3, also abbreviated as IP3 in this article) are believed
as second messages for various signal transduction. In brief, the membrane-localized DAG activates
the protein kinase C (PKC) and the soluble InsP3 diffuses in cytosol to release Ca2+ from intracellular
stores via a ligand-gated Ca2+ channel [5,14]. DAG can also be used to generate phosphatidic
acid (PA), which is also an important signaling molecule [6]. Those inositol polyphosphates can be
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further phosphorylated by inositol polyphosphate multi kinases (IPKs) and stored as phytic acid
(inositol-1,2,3,4,5,6-hexakisphosphate, InsP6) in seeds and other storage tissues [4,15]. InsP6 has been
identified as a signaling molecular to regulate Ca2+ release as well [6]. Moreover, InsP6 could be
converted to pyrophosphates, denoted as PPx-InsPs [16]. Notably under abiotic stress, there are
crosstalks between the Ins signaling pathway and phytohormones, especially abscisic acid (ABA) [4,6].

3. Phosphatases in Inositol Signaling Pathways

Among the processes of inositol phosphate (IP) and the phosphoinositide (PI) signaling pathway,
dephosphorylation is catalyzed by specific inositol phosphatases on various substrates (Figure 1).
Until now, dozens of enzymes have been identified, including inositol polyphosphate 5-phosphatases
(5PTases), suppressor of actin (SAC) phosphatases, SAL1 phosphatase/FIERY1 (FRY1) and its homologs,
inositol monophosphatase (IMP), and phosphatase and tensin homologue deleted on chromosome
10 (PTEN)-related phosphatases (Figure 2). Most knowledge of them was obtained from the studies
in the model plant Arabidopsis thaliana. These plant inositol phosphatases have a broad function in
development and adaptation by altering the IP or PI signaling pathways. The general information of
those Arabidopsis proteins was listed in Table 1. Interestingly, one certain inositol phosphatase could
hydrolyze several substrates, even both inositol phosphate and phosphoinositide. One substrate could
be degraded by more than one enzyme as well, suggesting their redundant roles in multiple aspects of
life processes.

The 5PTases family is the biggest family of the mentioned inositol phosphatases, containing
15 members in Arabidopsis, 21 in rice, and 39 in soybean [17]. 5PTases hydrolyze the phosphate bond
on the 5-position of the inositol ring from both inositol phosphate and phosphoinositide with the
conserved inositol polyphosphate phosphatase catalytic (IPPc) domain. Due to the substrate specificity,
mammalian 5PTases have been classified into four groups [18]. Group I, 5PTases hydrolyze only the
water-soluble inositol polyphosphates (Ins(1,4,5)P3 and Ins(1,3,4,5)P4); group II the water-soluble
inositol polyphosphates and the membrane-bound phosphoinositide; group III, Ins(1,3,4,5)P4 and
PtdIns(3,4,5)P3 with a 3-position phosphate group; and group IV only phosphoinositide. Similar as the
mammalian counterparts, plant 5PTases also have various substrate specificities. The substrates have
been identified by biochemical evidences for twelve of the fifteen Arabidopsis 5PTases, including Group
I, Group II, and Group IV 5PTases (Table 1). Since several 5PTases could hydrolyze Ins(1,4,5)P3 to
prevent its accumulation, it is believed to terminate the corresponding Ins(1,4,5)P3 pathway and alter
abscisic acid (ABA) signaling, Ca2+ release, and reactive oxygen species (ROS) production [19–21].

The SAC phosphatases are polyphosphoinositide phosphatases, containing the enzymatic SAC
domain [22]. There are nine members in Arabidopsis [23]. Most Arabidopsis SAC phosphatases have
a ubiquitous expression pattern, except for AtSAC6 which is only expressed in flowers under normal
growth condition. Their expression was not altered by treatment with phytohormones (auxin, cytokinin,
GA, and ABA) [23]. When two-week-old seedlings were treated with various stresses (dark, cold, salt,
and wounding), only AtSAC6 has been identified to be induced by salt stress, indicating it would be
involved in salt response [23]. Besides, the sac9 mutants exhibit a constitutive stress response with
highly up-regulated stress-induced genes and over-accumulation of ROS [24]. Though there is limited
knowledge on their substrate specificity, SAC phosphatases have been found to affect the accumulation
of some certain phosphatidylinositol phosphates, such as PtdIns(4,5)P2, PtdIns(3,5)P2, and PtdIns4P,
in addition to having a possible role in vesicle trafficking [24–26].
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Figure 2. Inositol phosphatases and their inositol-related substrates overviewed in this study.
IMP—inositol monophosphatase, PTEN—phosphatase and tensin homologue deleted on chromosome
10, SAC—suppressor of actin, 5PTases—inositol polyphosphate 5-phosphatases.

Comparing to 5PTases and SAC phosphatases, there are fewer members in the SAL, IMP,
and PTEN families and most of them behave as bifunctional enzymes (Table 1). AtSAL1 and AtSAL2
exhibit the activities of not only inositol polyphosphate 1-phosphatase but also 3’(2’),5’-bisphosphate
nucleotidase [47,56]. The other SAL1 homologues without inositol phosphatases are not listed here.
AtSAL1 has been identified as an important player in response to various stresses, probably through
both enzyme activities [48,49,51,53,63–65]. Three IMP members have been identified in Arabidopsis [11].
IMP and inositol monophosphatase-like 1 (IMPL1) exhibit bifunctional activities affecting both inositol
and ascorbate synthesis pathways, whereas IMPL2 is a histidinol-phosphate phosphatase affecting
histone biosynthesis pathways [57,66]. The IMPs from other plants have been shown to play a role
in stress tolerance [67–69], which we will discuss later. PTEN members are also dual phosphatases
for protein and phosphoinositide phosphates [62]. The transcript and protein analyses showed that
AtPTEN2a and AtPTEN2b were up-regulated at transcriptional level, but not at protein level under salt
and osmotic stress [62], suggesting their potential roles in plant adaptation to stress. But no further
evidence has been reported yet.

4. Function of Inositol Phosphatases under Abiotic Stress

4.1. 5PTases and Plant Responses to Abiotic Stress

The capacity of 5PTases hydrolyzing IP3 is believed to be vital in the termination of IP3, consequently
altering Ca2+ oscillations, ABA signaling, and other stress-related pathways. The transgenic Arabidopsis
plants overexpressing mammalian type I (group I) inositol polyphosphate 5-phosphatase (InsP 5-ptase)
exhibited increased drought tolerance with less water loss [70]. The contents of IP3 and IP6 were
decreased in the transgenic lines as expected, thus attenuating ABA induction and Ca2+ signal
transduction. The stomata were less responsive to the inhibition of opening by ABA and more
sensitive to ABA-induced closure. Furthermore, the microarray data showed that dehydration-responsive
element-binding protein 2A (DREB2A), encoding a drought-inducible ABA-independent transcription
factor, and the DREB2A-regulated genes were induced in the InsP 5-ptase transgenic plants, suggesting
the drought tolerance is mediated via the DREB2A-dependent pathway [70].

For plant 5PTases, it is common to take a role in the degradation process of inositol phosphate
or phosphoinositide, terminating the IP3 signaling, thus altering of ABA pathway and Ca2+ release,
which is believed to be vital in stress tolerance [19,21,34,39]. However, only three of the 15 At5PTases
have been identified to play important roles in abiotic stress with genetic and biochemical evidences
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until now. At5PTase7 and At5PTase9 function in salt tolerance, and At5PTase13 in low nutrient and
sugar stress [35,36,41].

The T-DNA insertion mutants of At5PTase7 or At5PTase9 increased salt sensitivity and the
overexpression plants increased salt tolerance [35,36]. Mutation in either At5PTase7 or At5PTase9
reduced ROS production in the Arabidopsis roots after 10 to 15 min after salt treatment. Additionally,
the expression of salt-responsive genes, such as RD29A and RD22, was not induced highly in both
mutants as in the wild-type under salt stress [35,36]. It suggested that the defect in At5PTase7 or
At5PTase9 would disturb ROS production and salt-responsive gene expression, probably hampering
the subsequent rescue signal transduction. Interestingly, the At5PTase9 mutants appeared to have
a better ability to resistant osmotic stress. Meanwhile, the At5PTase9 mutants decreased Ca2+ influx
and fluid-phase endocytosis [36]. Though the At5PTase7 and At5PTase9 isomers take non-redundant
roles in regulating plant responses to salt stress, they share the same substrates, membrane-bound
phosphoinositide, indicating that phosphoinositide would be important in salt tolerance [36].

At5TPase13 is one of the four At5TPases (At5TPase12-15), which contain the plant specific WD40
repeats [38,44]. The T-DNA insertion mutants of At5TPase13 showed a reduction of root growth
under limited nutrient conditions and germination rates in response to sugar stress, along with ABA
insensitivity [41]. The yeast two-hybrid analyses suggested that its WD40 repeat domain interacts
with the sucrose nonfermenting-1-related kinase (SnRK1.1), which is an energy/stress sensor [41].
The genetic and biochemical evidences indicated that At5TPase13 acts as a positive regulator of
SnRK1.1 under low-nutrient or low-sugar conditions, as a negative regulator under severe starvation
conditions through affecting the proteasomal degradation of SnRK1.1. Strangely, the At5ptase13 mutants
accumulate less IP3 in response to sugar stress [41]. Again, At5PTase13 could alter cytosolic Ca2+ to
regulate PHOYOTROPIN1 signaling under blue light [40].

Besides, several transcriptional analyses showed that the expression of multiple At5PTases is
greatly up- or down-regulated in response to a series of abiotic stresses, such as cold, osmotic, salt,
drought, oxidative, and heat [35,36,71]. Considering the general function of the known 5PTases in the
inositol pathway, Ca2+ signaling, ABA responses, ROS generation, vesicle trafficking, and possible
connection with other phytohormones [43,71], it could imply their potential roles in plant responses to
abiotic stress.

4.2. SAL1 and Plant Responses to Abiotic Stress

AtSAL1, identified as a homologue of the yeast HAL2 in Arabidopsis and also well-known as
FIERY1 (FRY1), has dual enzymatic activity of inositol phosphatase and nucleotidase, which play a role
in both inositol signaling and nucleotide metabolite [47,48]. AtSAL1 functions broadly in responses to
abiotic stresses, including salt, cold, lithium, drought, cadmium, high light, and oxidative, probably
with the contributions of both enzymatic activity [48,49,51–53,63,72,73]. Here we will focus on its
activity of inositol polyphosphate 1-phosphatase. Remarkably, it can hydrolyze the signaling molecular
IP3, thus affecting the subsequent steps in a similar pattern of 5PTases, which we have discussed above.

It seems the effects of AtSAL1 on stress responses are controversial. Ectopic expression of AtSAL1
could increase lithium tolerance in yeast by modifying Na+ and Li+ effluxes [47]. Ectopic expression of
its homologue in soybean, GmSAL1, could alleviate salinity stress in tobacco BY-2 cells [74]. Mutation
in AtSAL1 would cause more sensitivity to salt, osmotic, and cold stress in Arabidopsis [48,72]. However,
another Atsal1 mutant, hos2 with a single amino acid substitution exhibited as more resistant to lithium
and salt stress [72]. Moreover, overexpression of AtSAL1 or ectopic expression of GmSAL1 could not
enhance salt tolerance in Arabidopsis [49,74]. Loss function in AtSAL1 would enhance drought and
cadmium resistance in Arabidopsis, suggesting it would be a negative regulator of stress tolerance [51,63].
Expressing the modified SAL1, by inserting the META motif from black yeast Aureobasidium pullulans,
ApHal2, improved salt and drought tolerance in Arabidopsis [73]. It seems the presence of the META
motif should be responsible for its ability on the stress tolerance, but the mechanism is still obscure.
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The molecular mechanism of AtSAL1 in stress responses seems to be complicated for its multiple
effects in various cellular processes. First, AtSAL1 would regulate stress tolerance and ABA responses
via IP3 signaling. The Atsal1 mutants increase IP3 accumulation and the expression levels of ABA
and stress genes, including RD29A, cold-specific CRT-binding factor 2 (CBF2), and CBF3 [48]. On the
contrary, ectopic expression of GmSAL1 leads to a reduction of IP3 accumulation and suppression of
the ABA-induced stomatal closure [74]. Furthermore, it also showed AtSAL1 could regulate Ca2+

release and modulate the auxin pathway by IP3 signaling in plant development [54,55]. It seems
a similar consequence of AtSAL1 in the IP3 signaling as for 5PTases. Maybe further investigation
will supply evidence that AtSAL1 takes a role in Ca2+ release and its downstream signaling in
response to abiotic stress as well. Secondly, AtSAL1 also regulates the ion homeostasis via the IP3

pathway. Ectopic expression of AtSAL1 could modify Na+ and Li+ effluxes in yeast for lithium and
salt tolerance [47]. GmSAL1-transgenic BY-2 cells could compartmentalize more Na+ in vacuolar for
protection from salt stress [74]. Additionally, AtSAL1 takes a role more likely as a phosphoadenosine
phosphatase under drought, high light, and oxidative stress, for only 3′-phosphoadenosine 5′-phosphate
(PAP), not IP3, accumulated in the Atsal1 mutants, when suffering stresses [49,52,53,65]. The genetic
evidences indicated that PAP accumulation could also affect the ABA pathway, relying on, rather,
the negative regulator ABH1 in the branched ABA pathway, than ABI1 in the core ABA pathway [49].
AtSAL1 could protect 5′ to 3′ exoribonucleases (XRNs) by degrading PAP and subsequently
modulate the expression of the corresponding nuclear genes, supposed as the chloroplast retrograde
pathway [52,53,65]. Besides, the AtSAL1-deficient mutants have been found to attenuate endoplasmic
reticulum (ER) stress under cadmium stress [63]. But no exploration has been made to determine its
connection with the IP3 signaling or SAL1-PAP pathway. This would provide a new insight on the
mechanism of AtSAL1 in various stress tolerance [63].

4.3. IMPs and Plant Responses to Abiotic Stress

IMPs were first identified in tomato to play a role in inositol synthesis with high sensitivity to
lithium [10]. Their homologues in Arabidopsis have also been characterized as multi-functional enzymes
involved in inositol, ascorbate, and histone biosynthesis [57,59,66], so do their homologues in other
plants, such as rice (Oryza sativa L.), chickpea (Cicer arietinum L.), soybean (Glycine max), barley (Hordeum
vulgare), and Medicago truncatula [68,69,75]. The genetic studies showed that IMPs play a role in seed
development in Arabidopsis [11]. Chickpea IMP could also influence seed size/weight [76]. But few
explorations have been made with Arabidopsis IMP on stress tolerance yet. Only some authors have
tried assays in chickpea and rice suggesting that IMPs also function in response to abiotic stress [67–69].
But it is still unclear how IMPs influence the inositol pathway to confer stress.

Biochemical evidence demonstrated that CaIMP contains the same enzyme activity as Arabidopsis
IMP and IMP activity is increased in chickpea seedlings under abiotic stresses, including salt, cold,
heat, dehydration, and paraquat. It is consistent with the results of the transcript analyses by qRT-PCR,
which showed that CaIMP is induced under abiotic stress and ABA treatment [69]. The CaIMP-transgenic
Arabidopsis plants exhibited enhanced tolerance to abiotic stress, whereas the IMP-deficient Arabidopsis
mutants increased the sensitivity to stress during seed germination and seedling growth. The inositol
content and ascorbate content of the CaIMP-overexpressing lines are higher than the wild-type and the
vector control, suggesting CaIMP would improve the plant tolerance to stress through both metabolic
pathways [69]. Association analyses performed with 60 chickpea germplasm accessions showed that
NCPGR90, a simple sequence repeat marker for phytic acid content and drought tolerance, is located
to the 5’UTR of CaIMP [68]. The transcript lengths of CaIMP are different between the drought-tolerant
and drought-susceptible accessions, suggesting this variation might regulate phytic acid contents in
plants, thus conferring drought tolerance in chickpea [68]. In another study, this variation also causes
the differential protein level and enzymatic activity of CaIMP [76].

Rice OsIMP is significantly upregulated by cold and ABA treatment by transcript
analyses [67]. The promoter analyses on sequence also identified several important stress-responding
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cis-acting elements, including ABRE-element (abscisic acid responsiveness), LTR (low-temperature
responsiveness), TCA-element (salicylic acid responsiveness), GARE-motif (gibberellins responsive),
and MBS (MYB binding site). Ectopic expression of OsIMP in tobacco improved cold tolerance.
The transgenic plants contained more inositol content, less hydrogen peroxide (H2O2), and less
malondialdehyde (MDA), with increased antioxidant enzyme activities under normal and cold stress
conditions [67]. It suggested that the accumulation of inositol by expressing OsIMP would modulate
the antioxidant enzymes’ activities to conquer cold stress.

5. Conclusions

Substantial evidences demonstrate inositol phosphates, phosphoinositides, and the related inositol
signaling play a crucial role in various life processes of development and environmental adaptation
in plants [1,4,6,7,12]. When plants suffer abiotic stress from the environment, a membrane receptor
would accept the stimulus and the membrane-associated phosphoinositides would pass the cellular
message by producing second messages, lipid-bound DAG, and soluble IP3. Components involved in
the inositol pathways have been noted for their general roles in stress tolerance. This article focused
on the knowledge about inositol phosphatases, which are considered to be more important in the
degradation pathway of IP3 signaling, and their function in plant responses to abiotic stress.

Around 30 members of inositol phosphatases from five families have been identified.
Their functions and mechanisms are still largely unknown. Biochemical and physiological data,
especially those from analytical techniques, have delineated their substrates and the affecting signals.
Moreover, the genetic evidences elucidate the genes’ function and how to pass the signals. In general,
loss-in-function of inositol phosphatases usually cause the accumulation of IP3 or phosphoinositides,
thus facilitating Ca2+ release from cellular stores and affecting ABA or other phytohormones’ pathways.
For their effects on lipid-bound phosphoinositides, several enzymes have been proved to be involved
in vesicle trafficking. For most of the inositol phosphatases, the existed evidences could only support
part of the model. There are also some other puzzles. Since phytic acid (InsP6) could also serve as a
signaling molecule to regulate Ca2+ release [6], what is the role of inositol phosphatases in this process?
There are multiple genes in the same family, especially 5PTases and SAC phosphatases. How do
plants coordinate their function? Most of the knowledge about these enzymes is obtained from the
mode plant Arabidopsis. Study from other plants is relatively rare. Do these inositol phosphatases
take a universal role in all plants under abiotic stress? Hopefully, more exploration will expand our
understanding about inositol phosphatases.
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Abbreviations

ABA abscisic acid
ABRE abscisic acid responsiveness
BST1 BRISTLED1
CBF CRT-binding factor
CVL1 CVP2-like1
CVP2 cotyledon vascular pattern2
DAG diacylglycerol
DGPP diacylglycerol pyrophosphate
DREB2A dehydration-responsive element-binding protein 2A

530



Int. J. Mol. Sci. 2019, 20, 3999

ER endoplasmic reticulum
FRA3 fragile fiber 3
FRA7 fragile fiber 7
FRY1 FIERY1
Glc6P glucose-6-phosphate
GARE gibberellins responsive
HOS2 high expression of osmotic stress-regulated gene expression 2
IMP myo-inositol monophosphatase
IMPL inositol monophosphatase-like
Ins inositol
InsP 5-ptase inositol polyphosphate 5-phosphatase
IP inositol phosphate
IP3 Inositol(1,4,5)trisphosphate
IPK inositol polyphosphate multi kinase
IPPc inositol polyphosphate phosphatase catalytic
LTR low-temperature responsiveness
MBS MYB binding site
MDA malondialdehyde
MRH3 root hair morphogenesis 3
MIPS myo-inositol-3-phosphate synthase
P phosphate
PA phosphatidic acid
PAP 3′-phosphoadenosine 5’-phosphate
PAPS 2’-PAP and 3’-phosphoadenosine 5’-phosphosulfate
PI phosphoinositide
PIP5K PtIns4P 5-kinase
PIP4K PtIns4P 4-kinase
PIS phosphatidylinositol synthase
PKC protein kinase C
PLC phospholipase C
PPx-InsPs pyrophosphates
PTEN phosphatase and tensin homologue deleted on chromosome 10
PtdIns phosphatidylinositol
RHD4 root hair defective 4
RON1 rotunda 1
ROS reactive oxygen species
SAC suppressor of actin
SnRK1.1 sucrose nonfermenting-1-related kinase
TCA salicylic acid responsiveness
VTC4 vitamin C 4
XRN 5′ to 3′ exoribonuclease
5PTases inositol polyphosphate 5-phosphatases
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