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Abstract: The agricultural industry has made a tremendous contribution to the foundations of
civilization. Basic essentials such as food, beverages, clothes and domestic materials are enriched by
the agricultural industry. However, the traditional method in agriculture cultivation is labor-intensive
and inadequate to meet the accelerating nature of human demands. This scenario raises the need
to explore state-of-the-art crop cultivation and harvesting technologies. In this regard, optics
and photonics technologies have proven to be effective solutions. This paper aims to present a
comprehensive review of three photonic techniques, namely imaging, spectroscopy and spectral
imaging, in a comparative manner for agriculture applications. Essentially, the spectral imaging
technique is a robust solution which combines the benefits of both imaging and spectroscopy but faces
the risk of underutilization. This review also comprehends the practicality of all three techniques
by presenting existing examples in agricultural applications. Furthermore, the potential of these
techniques is reviewed and critiqued by looking into agricultural activities involving palm oil, rubber,
and agro-food crops. All the possible issues and challenges in implementing the photonic techniques
in agriculture are given prominence with a few selective recommendations. The highlighted insights
in this review will hopefully lead to an increased effort in the development of photonics applications
for the future agricultural industry.

Keywords: agriculture; photonics; imaging; spectral imaging; spectroscopy

1. Introduction

Light constitutes a collection of particles known as photons, propagated in the form of waves [1].
In physics, light often relates to radiation in the entire electromagnetic spectrum, encompassing X-rays,
ultraviolet, visible light, infrared, and microwaves among others [2]. The unique electromagnetic
properties of light have intrigued academics across the globe and the earliest study can be traced
back to the early 17th century [3]. As time passes, the accumulation of knowledge and technological
advancement have gradually shaped the canvas for light-related research, leading to the establishment
of the field of optics and photonics.

Optics can be defined as a branch of physics that studies the behavior and properties of light as
well as the interaction of light with other matter [2]. Meanwhile, photonics can be regarded as the
application of light through the systematic generation, control and detection of photons [2,4]. Despite
the distinction between optics and photonics, both terminologies have often been used interchangeably
in the literature to collectively represent the science and application of light [1].
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Optics and photonics have influenced various engineering applications, transforming the
landscape of various fields and improving the lives of mankind. One of the main applications
of optics and photonics can be seen in the field of communications. Knowledge of optics and photonics
has been used to develop optical fibers which help to cater for the needs of broadband Internet service
in this “data hungry” era. Furthermore, optics and photonics have been used in the manufacturing of
modern displays such as liquid crystal display (LCD), organic light-emitting diode (OLED), flexible
display and such. Solar cells for energy harnessing too illustrate another application of optics and
photonics. Not least, optics and photonics have also been applied in more sophisticated areas such as
security surveillance, medical imaging, quantum computing and more [1].

Amidst the modern and complex solutions discussed earlier, it often slipped our minds that optics
and photonics can be readily integrated into the field of agriculture. The simplest examples would
be the adjustment of plantation direction for optimum sunlight exposure, as well as the usage of
incandescent light bulbs in egg incubation and hatching [5]. Over recent decades, academics have been
alerted to the potential of optics and photonics in the agricultural industry. This has led to progressive
developments that utilize optics and photonic techniques in maximizing the quality and productivity
of agricultural products.

This paper aims to review some of the most popular optics and photonic techniques in agriculture,
namely imaging, spectroscopy and spectral imaging. In addition, existing applications of each
technique in the agricultural industry will also be compiled. A comprehensive discussion will also be
made to gauge the potential of exploiting optics and photonic techniques in the agricultural sector
with the intention of improving the quality and productivity of the agricultural products at a reduced
labor cost.

2. Classification of Photonics Systems in Agriculture

Quantity and quality have always been the primary foci in the field of agriculture. The governing
of these attributes is anticipated to be more crucial in the upcoming years. This prediction is based
on the constant increase in global population as well as heightened expectations for healthy food
sources. However, the agricultural field faces great pressure under globalization. The transformation
of the global economic landscape makes agricultural activities seem less profitable in contrast to other
industrial activities. The outflow of the workforce makes it increasingly expensive and difficult to meet
the demands of agricultural activities.

As a result, modern technology has been integrated into the agricultural field to maximize output
efficiency at minimum labor force. Similar to other industries, automation systems have been applied
in stages of agricultural activities to reduce a dependency on manual labor [6]. These systems require
optics and photonics techniques to complement them, providing the required ‘sight’ for operations.
These vision requirements have been fulfilled by optics and photonic techniques such as imaging, and
spectral imaging. These techniques provide machine vision at high dynamic range, high resolution
and high accuracy in a non-destructive, non-contact and robust manner [5]. In the subsections below,
details of ESS configurations, their classifications and structures have been illustrated.

2.1. Imaging Technique

The imaging technique is analogous to the function of the human eye. It captures the image of
the subject for necessary calculations and measurements before performing the final evaluations [7].
The imaging technique is essential for collecting spatial, color [6] and even thermal [8] information
of the subject of interest. Therefore, imaging techniques are typically operated in an active manner.
The active imaging technique involves image acquisition under two major light sources, namely visible
light and infrared sources. Images under visible light can be easily acquired with any standard camera
modules. On the other hand, images under exposure to infrared can be acquired with special infrared
camera modules [8].
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Image acquisition under visible light is similar to our daily photography. The image acquisition
process under this light source is straightforward and images captured are usually rich in details and
colors. However, complexity often arises while performing analysis on these images due to illumination
variations. For instance, images captured outdoors vary under sunny and cloudy conditions. Meanwhile,
images captured indoors is categorized by natural light, incandescent and fluorescent conditions [7].

The acquired image will then undergo pre-processing to convert it into an appropriate format
before further analysis. Pre-processing tasks may include exposure correction, color balancing, noise
reduction, sharpness increase or orientation change. Next, the process of feature detection and matching
as well as segmentation is performed on the pre-processed image to extract the object or region of
interest. Finally, the subject of interest is analyzed with proper analysis algorithms in the respective
area of application [9].

The imaging technique can be easily applied in the simple analysis of static-positioned objects or
even in more complex areas which involve moving targets, such as visual navigation and behavioral
surveillance. These achievements were made possible by utilizing the spatial information acquired
through the imaging technique for position triangulation and motion guidance [7,9]. In image
processing, the computer imaging technique has been employed to create, edit, and display graphical
images, characters, and objects. The computer image analysis technique is a broad field which consists
of computer domains and applications in food quality evaluation [10,11], grading and the sorting of
agricultural products [12,13], as well as harvesting the crops [14], and estimating moisture content
in the drying stage for the storability of the food product [15]. Computer imaging contributes to the
development of digital agriculture. For instance, weed detection and fruit grading systems with digital
imaging techniques are cost effective systems in achieving ecological and economically sustainable
agriculture [16].

2.2. Spectroscopy Technique

In contrast to the imaging technique, the spectroscopy technique enables the ‘sight’ of properties
that are invisible to the naked eye. The spectroscopy technique functions by extracting spectral
information from the sample of interest. The spectral information is obtained when light interacts with
the composition of the sample. This interaction leads to changes in the intensity or frequency and
wavelength of the initial light source, ultimately defining a spectrum which acts as the fingerprint of
the sample [17].

Similar to the imaging technique, variations do exist for spectroscopy. These variations are
categorized by the nature of interaction between the light source and the sample when the spectroscopy
measurement is conducted. In the agricultural field, the commonly adopted spectroscopy techniques
are ultraviolet-visible (UV-VIS) spectroscopy, fluorescence spectroscopy, infrared (IR) spectroscopy,
and Raman spectroscopy [17].

2.2.1. Ultraviolet-Visible (UV-VIS) Spectroscopy

The ultraviolet-visible (UV-VIS) spectroscopy is conducted in both the ultraviolet (UV) and visible
light (VIS) band, spanning wavelengths from 100 nm to 380 nm (UV) and from 380 nm to 750 nm
(VIS). The principle governing the UV-VIS spectroscopy is Beer-Lambert’s law, which is expressed
by (1) and (2):

I = I010−εcl, (1)

ln
I0

I
= ln

1
T

= εcl = A (2)

where I0 and I are intensity of light entering and leaving a sample respectively, ε is the extinction
molar coefficient, c is the molar concentration of substance, l is the thickness of sample (cm), T is
transmittance and A is absorbance [18].

A typical model that illustrates Beer-Lambert’s law can be seen in Figure 1. It can be observed
that as light propagates through a sample, a portion of the incidental light source will be absorbed by
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the molecules in the sample, while the remaining light rays will transmit and escape across the sample.
The ratio between the intensity of the incident and escaped rays defines the absorbance of light by the
sample. This value of light absorbance is of main interest in UV-VIS spectroscopy. As in Equation (2),
light absorbance is dependent on ε, c, and l [18]. The absorbance value(s) at a single or multiple
wavelength(s) will then be used to measure the concentration of compounds in a sample [19–23].

 
Figure 1. Model of Beer-Lambert’s Law [18].

2.2.2. Fluorescence Spectroscopy

Fluorescence spectroscopy is distinct from other spectroscopy techniques in terms of the emission
of light when incident rays from an ultraviolet or visible light source is absorbed by fluorescent
molecules present in a sample. These fluorescent molecules are known as fluorophores and commonly
known examples include quinine, fluorescein, acridine orange, rhodamine B and pyridine 1 [24].

The fluorescence phenomenon can be explained with a Jablonski diagram illustrated in Figure 2.
It should first be understood that fluorescence involves the three electronic states of a fluorophore
molecule, namely the singlet ground, first and second electronic states. These states are represented by
S0, S1 and S2 in Figure 2. The key condition for fluorescence to occur is the excitation of the molecule
from the ground state, S0 to either electronic states S1 or S2 upon the absorption of light. If the molecule
reaches the S2 state, internal conversion or vibrational relaxation will occur, returning the molecule to
the lower S1 state without radiation emitted. From here, the molecule will again return to the S0 while
emitting light which has equal energy as the energy difference between S0 and S1. This light emission
is known as fluorescence and this condition typically occurs 10-8 seconds after the initial excitation [17].

Figure 2. Jablonski diagram [17]. Reproduced with permission from A. Nawrocka, Advances in
Agrophysical Research, Published by IntechOpen, 2013.

Fluorescence spectroscopy is highly specific and highly sensitive. The high specificity of the
technique arises from the usage of both the excitation and emission spectra; whereas high sensitivity
is achieved as radiation measurements are made against absolute darkness. These characteristics
however limit the independent usage of the technique [17]. As a result, fluorescence spectroscopy
is often combined with high performance liquid chromatography (HPLC) [25]. Variations may also
be implemented in the excitation and emission wavelengths, forming the synchronous fluorescence
spectroscopy (SFS) [26].
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2.2.3. Infrared (IR) Spectroscopy

Infrared (IR) spectroscopy operates within the IR band with wavelengths from 780 nm to 1 mm.
The IR band can be further broken down into three sub-bands, namely near-infrared (NIR; 780 nm to
5 μm), mid-infrared (MIR; 5 μm to 30 μm) and far-infrared (FIR; 30 μm to 1 mm). In agriculture-related
optics and photonics, the NIR and MIR bands are of greater interest [17].

IR spectroscopy obtains the spectral information of a subject due to molecular vibrations under
the excitation of an IR light source. In general, molecular vibrations occur when there exist normal
modes of vibrations. A normal mode of vibration (or fundamental) refers to the phenomenon in which
every atom in a molecule experiences a simple harmonic oscillation about its equilibrium position.
These atoms oscillate in phase at the same frequency while the center of gravity of the molecule remains
unchanged. A typical molecule has 3N-6 fundamentals (3N-5 for linear molecules), where N refers to
the number of atoms. The diatomic molecular vibrations are illustrated in Figure 3 [27].

Figure 3. Vibrations in diatomic molecules [17]. Reproduced with permission from A. Nawrocka,
Advances in Agrophysical Research, Published by IntechOpen, 2013.

Molecular vibrations, which occur regardless the presence of IR light source, result in an increase
in light absorption. These peaks in absorption form specific bands in the IR spectrum that correspond
to the specific frequencies in which molecular vibrations occur. This allows the easy identification of
the molecular structure in a sample since different molecules have different vibration frequencies [27].
This unique frequency ‘fingerprint’ is exceptionally beneficial in the analysis of complex molecules
that contains functional groups such as –OH, –NH2, –CH3, C=O, C6H5– and more. For instance,
the C6H5– group forms peaks at wavenumbers from 1600 cm−1 to 1500 cm−1 (wavelengths from
6.25 μm to 6.67 μm) whereas the C=O group exhibits high absorption at wavenumbers from 1800 cm−1

to 1650 cm−1 (wavelengths from 5.56 μm to 6.06 μm) [28].

2.2.4. Near-Infrared (NIR) Spectroscopy

The near-infrared (NIR) spectroscopy operates within the NIR band with wavelengths from
780 nm to 5 μm. The absorptions within the NIR band exist due to overtones and combinations of the
fundamental vibrations. Overtones refer to higher frequencies that are multiples of the fundamental
frequency. Meanwhile, combinations involve interactions between two or more vibrations occurring
simultaneously, resulting in a frequency which is the sum of multiples of the respective frequencies.
A majority of the absorptions in the NIR band are due to vibrations of the C–H, O–H and N–H bands.
The S–H and C=O bonds too potentially contribute to these absorptions. Several assignments of the
NIR absorption bands can be seen in Table 1 [29].
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Table 1. Examples of NIR absorption bands [29].

Wavelength (nm) Wavenumber (cm−1) Assignment

Water

1454 6878 1st overtone O–H stretching

1932 5176 O–H combination

Proteins

1208 8278 2nd overtone C–H stretching

1465 6826 1st overtone N–H and O–H stretching

1734 5767 1st overtone C–H stretching

1932
2058
2180

5176
4859
4587

N–H combination and O–H stretching

2302
2342

4344
4270 C–H stretching combination

Oil

1210 8264 2nd overtone C–H stretching

1406 7112 1st overtone N–H and O–H stretching

1718
1760

5821
5682 1st overtone C–H stretching

2114 4730 N–H combination and O–H stretching

2308
2346

4333
4263 C–H stretching combination

Starch

1204 8306 2nd overtone C–H stretching

1464 6831 1st overtone N–H and O–H stretching

1932
2100

5176
4762

N–H combination and O–H stretching

2290
2324

4367
4303

C–H stretching combination

NIR spectroscopy, which is a non-destructive measurement, enables the simultaneous identification
of components in a single sample within a short period of time, making it a preferable replacement for
various chemical techniques. However, consideration should be taken into account as this technique
requires initial calibration with samples of known composition, requiring great expenses of time and
resources. Not least, frequent recalibration and issue of instrument interoperability might affect the
practicality of the NIR spectroscopy technique [29].

2.2.5. Mid-Infrared (MIR) Spectroscopy

The mid-infrared (MIR) spectroscopy operates within the MIR band with wavelengths from 5 μm
to 30 μm (wavenumbers from 4000 cm−1 to 400 cm−1; note the presence of slight overlapping with
NIR). The absorptions that occur within the MIR band are due to fundamental vibrations and can be
segregated into four regions, namely the X–H stretching region (4000 cm−1 to 2500 cm−1), triple-bond
region (2500 cm−1 to 2000 cm−1), double-bond region (2000 cm−1 to 1500 cm−1) as well as the fingerprint
region (1500 cm−1 to 600 cm−1) [27].

The X–H stretching region is due to vibrations from O–H, C–H and N–H stretching. The triple-bond
region arises from vibrations of C≡C and C≡N bonds. Besides, the double-bond region relates to C=C,
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C=O and C=N vibrations. Lastly, the fingerprint region roots on bending and skeletal vibrations.
Table 2 lists some of the common examples of MIR absorption bands [27].

Table 2. Examples of MIR absorption bands [27].

Wavelength (nm) Wavenumber (cm−1) Assignment

Water

2.778–3.125 3200–3600 O–H stretching

6.061 1650 H–OH stretching

Proteins

5.917–6.250 1600–1690 Amide I (C=O stretching)

6.349–6.757 1480–1575 Amide II (C–N stretching and N–H bending)

7.692–8.130 1230–1300 Amide III (C–N stretching and N–H bending)

Fats

3.333–3.571 2800–3000 C–H stretching

5.731–5.797 1725–1745 C=O stretching

10.309 970 C=C–H bending

Carbohydrates

3.333–3.571 2800–3000 C–H stretching

7.143–12.500 800–1400 Skeletal stretching and bending

MIR spectroscopy is effective since it provides information on structure-function relationships
while performing quantitative analysis. The structure-function relationships are useful in food research
and quality control, making MIR spectroscopy a crucial technique in the field of agriculture. The Fourier
transform process is often bundled with MIR spectroscopy for data analysis, forming the popular
Fourier transform infrared spectroscopy (FTIR) technique [27].

2.2.6. Raman Spectroscopy

Raman spectroscopy (RS), similar to IR spectroscopy, is another form of vibrational spectroscopy
technique. RS obtains the spectral information of samples due to the occurrence of Raman effects [30].
Prior to understanding the Raman effects, one should look into the light scattering schemes that
occur when incident photons interact with molecules in the sample. The possible light scattering
schemes are illustrated in Figure 4. In the case of elastic scattering or Rayleigh scattering, the excited
photons experience no change in energy content upon returning to ground state. Alternately, in the
case of inelastic scattering or Raman scattering, the excited photons may lose (Stokes’ shift) or gain
(Anti-Stokes’ shift) energy equivalent to the vibrational energy changes in the atoms of the molecules.
This affects the motion of the atoms as well as the polarizability of the molecule. The change in
molecule polarizability results in increased Raman intensity, ultimately forming the Raman spectrum
when plotted across the investigated wavenumbers. However, this effect is weak as the probability of
energy exchange is low [30].

The RS technique is gaining popularity as it enables the identification of molecular structure
through the characteristic wavenumber in which vibrations occur. Furthermore, samples can be
studied in the absence of a solvent as water causes weak Raman scattering. Not least, this technique
is instantaneous and may undergo intensity enhancement. However, this technique is not without
limitations. Due to the low probability of Raman scattering, this technique requires high concentration
of samples. Moreover, sample molecules may experience photo degradation due to excitation of
electronic absorption bands. The existence of fluorescence from impurities may disrupt the results
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obtained as well. These limitations aside, the RS technique can be combined with IR spectroscopy to
deliver satisfactory results as summarized in Table 3 [30].

Figure 4. Light scattering schemes [17]. Reproduced with permission from A. Nawrocka, Advances in
Agrophysical Research, Published by IntechOpen, 2013.

Table 3. Examples of Raman bands [30].

Wavelength (nm) Wavenumber (cm−1) Assignment

Water

2.778–3.125 3200–3600 O–H stretching

Proteins

19.608
19.048
18.349

510
525
545

S–S stretching

14.925–15.873
13.423–14.286

630–670
700–745 C–S stretching

5.882–6.250 1600–1700 Amide I (C=O stretching and N–H bending)

8.032–8.097 1235–1245 Amide III (C–N stretching and N–H bending)

3.876–3.922 2550–2580 S–H stretching

3.333–3.571 2800–3000 C–H stretching

Fats

6.940 1441 CH2 bending

6.863 1457 CH3–CH2 bending

6.039 1656 C=C stretching

3.378–3.503 2855–2960 C–H stretching

Carbohydrates

11.962 836 C–C stretching

9.398 1064 C–O stretching

3.434
3.397

2912
2944 C–H stretching

2.898 3451 O–H stretching

2.2.7. Additional Spectroscopy Techniques

Apart from the popular spectroscopy techniques discussed earlier, existing studies presented
additional variations of spectroscopy techniques which may be more complex in nature. For instance,
dielectric spectroscopy has been utilized in agricultural inspections. Dielectric spectroscopy involves
the inspection of dielectric properties or permittivity of samples over broad frequency ranges. Dielectric
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properties or permittivity refers to the ability of samples to store electrical energy in the electric field.
In this spectroscopy technique, the permittivity is a complex permittivity relative to the free space, and
this complex number is represented by (3):

ε = ε′ + jε′′ (3)

where the real part, ε′, is the dielectric constant and the imaginary part, ε”, is the dielectric loss
factor which covers losses due to dipolar relaxation and ionic conduction [31]. Another spectroscopy
variation is the nuclear magnetic resonance (NMR) spectroscopy technique. The NMR spectroscopy
gains spectral information of samples from the interaction between the magnetic moments of nuclei
of various atoms and the applied magnetic fields. The two common phenomena that give rise to the
NMR spectra are chemical shift and J-coupling [32].

A chemical shift occurs due to different resonant frequencies present in nuclei of the same species.
The difference in resonant frequencies is a result of shielding effect from electrons surrounding the
nuclei. The shielding effect is sensitive to chemical environments, hence allowing the characteristic
identification of specific molecular functional groups [32].

The J-coupling phenomenon is also known as indirect (scalar) spin-spin coupling. This coupling
effect results in splitting of spectroscopic lines into multiplets. The J-coupling occurs between two
nuclei or groups of nuclei and is governed by the polarization of electrons on the chemical bonds
connecting these nuclei. The polarization scheme is in turn dependent on the instant orientation of the
nuclear magnetic moments in the presence of a magnetic field [32].

2.2.8. Spectroscopy Processing and Analysis

The raw spectral data undergoes pre-processing or pre-treatment in order to reduce noise and
correct baseline variations. The common pre-treatment techniques are multiplicative scattering
correction (MSC), standard normal variate (SNV), Savitzky-Golay smoothing as well as first and second
derivatives [33,34].

Upon the completion of pre-processing or pre-treatment, the data set undergoes multivariate
analysis to select and extract wavelengths that contain useful information. This aids in rectifying
issues of collinearity, band overlapping and interaction between spectral variables. The results
from multivariate analysis will be used to develop calibration models for calibration and prediction
purposes [33,34].

The developed calibration models can be categorized according to the nature of the utilized
multivariate analysis such as linear regression or nonlinear regression. Calibration models based on
linear regression are built from partial least squares (PLS), interval partial least squares (iPLS), synergy
interval partial least squares (SiPLS) or successive projections algorithm (SPA). Meanwhile, calibration
models based on nonlinear regression are constructed from principal component analysis (PCA),
independent component analysis (ICA), support vector machines (SVM), artificial neural networks
(ANN) or a genetic algorithm (GA) [33,34].

The robustness of the final calibration model is evaluated from its ability to perform calibration
and prediction. The calibration performance of the model is determined from the root mean square
error of calibration (RMSEC) and the correlation coefficient (RC) in the calibration set. Meanwhile,
the prediction performance of the model is identified from the root mean square error of prediction
(RMSEP) and the correlation coefficient (RP) in the prediction set. Ideally, an effective model should
register low RMSEC and RMSEP, with minimum difference between RMSEC and RMSEP. Not least,
higher RC and RP are preferable [33,34].

2.3. Spectral Imaging Technique

The spectral imaging technique is a combination of both imaging and spectroscopy techniques
discussed earlier. Being a combinational technique, the spectral imaging technique preserves the best
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of both worlds, allowing the simultaneous extraction of spatial and spectral information from the
inspected sample [35,36].

2.3.1. Classes of Spectral Imaging

The spectral imaging technique acquires multiple images of the same subject at varying
wavelengths. The resulting spectral images are three-dimensional (3-D) in nature, consisting of
two spatial dimensions (row, x, and column, y) and one spectral dimension (wavelength, λ). Variations
of spectral imaging technique are determined by the continuity of data in the wavelength dimension,
branching out into hyperspectral imaging and multispectral imaging [35,36].

In general, hyperspectral imaging obtains spectral images in continuous wavelengths, whereas
multispectral imaging registers spectral images at discrete wavelengths. Hyperspectral imaging
acquires large number of images at high spatial and spectral resolutions. Due to the high volume of
data, hyperspectral imaging requires long image acquisition time and involves complex algorithms for
image analysis. Despite the complexity, hyperspectral imaging is essential for fundamental research
and is the basis for multispectral imaging [35,36].

Multispectral imaging acquires spectral images at a significantly smaller number compared to
hyperspectral imaging. Spectral images will only be acquired at optimal wavelengths predetermined
from the analysis of dataset obtained through hyperspectral imaging. A smaller number of
interested wavelengths allows rapid image acquisition and requires simpler image analysis algorithms.
This characteristic of optimum data volume makes multispectral imaging perfectly suited for real-time
in-field applications [35,36].

2.3.2. Spectral Image Acquisition Methods

There are several methods in which spectral imaging systems acquire spectral images. The methods
are point scan, line scan and area scan as illustrated in Figure 5 [35]. The point scan (whiskbroom)
method acquires the spectrum of a single pixel in each scan. A complete hyperspectral cube will be
generated as the detector moves from pixel to pixel along the two spatial axes (x and y). The point
scan method is similar to a normal spectroscopic approach. Since it cannot cover a large sample area,
the point scan method is time consuming and unsuitable for fast image acquisition [35,36].

(a)                (b)                 (c) 

Figure 5. Methods of spectral image acquisitions with (a) point scan, (b) line scan, and (c) area scan [35].
Reproduced with permission from J. Qin, Journal of Food Engineering, Published by Elsevier, 2013.

The line scan (pushbroom) method, in each scan, acquires a slit (line) of spatial information
together with the spectrum of every pixel along the line. A complete hyperspectral cube will be formed
when scans are repeated along the direction of motion (x). The operation characteristic of the line
scan method makes it suitable to acquire spectral images of moving samples. Hence, this method is
usually combined with conveyor belt systems, making it a popular method in practical production
lines. However, the exposure time should be short and accurately selected to allow uniform exposure
at all wavelengths [35,36].
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The area scan (band sequential) method, on the other hand, acquires a 2-D grayscale image
comprising of complete spatial information in a single wavelength. A complete hyperspectral cube is
generated through image stacking when scans are performed along the spectral axis (λ). The nature of
the area scan method makes it more suited for the imaging of stationary samples instead of moving
samples. In short, among the image acquisition methods discussed, line scan and area scan are
greatly preferred over point scan for both hyperspectral and multispectral imaging on the basis of time
consumption [35,36].

2.3.3. Spectral Imaging Sensing Modes

Spectral imaging may have varying sensing modes as illustrated in Figure 6. The sensing modes
are determined by the positions of the light source and the detector, forming variations such as
reflectance, transmittance and interactance modes. In reflectance mode, the detector collects the light
reflected off the illuminated surface. This sensing mode is suitable for identifying external features of
samples such as size, shape, color, texture and defects. However, when selecting this mode, the detector
should be properly positioned to avoid specular reflection [36].

(a) (b) (c) 

Figure 6. Sensing modes in spectral imaging; (a) reflectance, (b) transmittance, and (c) Interactance [36].
Reproduced with permission from D. Wu, Innovative Food Science & Emerging Technologies, Published
by Elsevier, 2013.

The transmittance mode operates by having the detector collect light rays transmitted through
inspected samples. In this sensing mode, the light source and the detector will be placed in opposite
direction to each other. Due to the absorption of light rays in a sample, the detected signal will be
relatively weak and dependent on sample thickness. Hence, the transmittance mode is commonly
applied in the internal inspection of relatively transparent samples [36].

Meanwhile, the interactance mode overcomes the limitations of both the reflectance and
transmittance modes. This sensing mode exhibits less surface effect compared to reflectance mode.
At the same time, it allows detection in deeper layers of a sample without being affected by sample
thickness as in transmittance mode. This advantageous sensing mode is set up by installing the light
source and the detector at the same side and parallel to each other [36].

2.3.4. Spectral Imaging System Construction

The variations in spectral imaging lead to a diversity of instruments during the construction
of a spectral imaging system. In general, a spectral imaging system is made up of a light source,
a wavelength dispersive device and an area detector [35,36].

The light source for a spectral imaging system can be classified into illumination and excitation
sources. Illumination light source is selected when measurements involve changes in the intensity of
the incident rays upon light-sample interaction. The spectral composition of the incident source will
not experience any changes. Such interaction is commonly observed in reflectance and transmittance
sensing modes. Broadband lights are normally used as illumination sources. An example of illumination
light source is the quartz tungsten halogen (QTH) lamp which is capable of generating a smooth
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spectrum in the visible to infrared range. Besides, the broadband light emitting diode (LED) has gained
popularity over time due to its low power consumption, low heat generation, small size and long
lifetime [35,36].

Excitation light source is usually selected when measurements involve changes in the frequency and
wavelength of the incident rays. Interactions of this nature usually involve fluorescence phenomenon
or Raman scattering effect. Narrowband lights are frequently used as excitation sources. A popular
excitation light source is the laser which generates powerful monochromatic rays. Not least, UV
fluorescent lamp, narrowband LED, high-pressure arc lamp (xeon arc lamp) and low-pressure vapor
lamp (mercury vapor lamp) add to the family of excitation light sources [30,31].

The core component of the spectral imaging system is the wavelength dispersive device.
A wavelength dispersive device disperses broadband light into different wavelengths to be projected
to the area detector. Examples of wavelength dispersive devices include the imaging spectrograph,
electronically tunable filter and beam splitting device [35,36].

Compared to traditional spectrograph, an imaging spectrograph extracts both spatial and spectral
information. The imaging spectrograph disperses the broadband light illuminated onto different
spatial areas of a sample into different wavelengths. This is achieved through diffraction gratings.
The two most popular imaging spectrographs are the prism-grating-prism (PGP) imaging spectrograph
which uses transmission diffraction gratings and the Offner imaging spectrograph that uses reflection
diffraction gratings [35,36]. These variations of imaging spectrographs are commonly applied in line
scan acquisitions [37].

An electronically tunable filter utilizes electronic devices to extract the required wavelength.
Current electronically tunable filters can be categorized into the acousto-optic tunable filter (AOTF)
and liquid crystal tunable filter (LCTF). An AOTF utilizes an acoustic transducer to generate high
frequency acoustic waves that change the refractive index of a crystal. The crystal with varied
refractive index will only allow the passage of light rays at the specified wavelength. Meanwhile,
a LCTF transmits light at the required wavelength through electronically controlled liquid crystal
cells [35,36]. These electronically tunable filters allow fast and flexible wavelength switching compared
to mechanical filter wheels. They too exhibit advantages of high optical throughput, narrow bandwidth
and broad spectral range [38].

Unlike the electronically tunable filter, a beam splitting device allows spectral images to be obtained
simultaneously at multiple wavelengths. The beam splitting device divides light into several parts
and passes them through bandpass filters which correspond to the required wavelengths. The beam
splitting device can be categorized into color splitting and neutral splitting. In color splitting, light rays
at a particular waveband are directed to each output, whereas, in neutral splitting, an equal portion of
the total light energy is directed to each output [35]. The multiple wavelength acquisition characteristic
makes the beam splitting device suitable to be installed in multispectral imaging systems [39].

A spectral imaging system will not be complete without an area detector. The area detector is
responsible for collecting light rays which will eventually form the spectral images of the inspected
sample. The common categories of area detector are the charge-couple device (CCD) camera and the
complementary metal-oxide-semiconductor (CMOS) camera [35,36].

A CCD camera is made up of millions of photodiodes (pixels) that are closely arranged to form
an array. These light sensitive photodiodes convert the incident photons into electric charges that
correspond to the intensity of the exposed incident rays. The accumulated electric charges at each
photodiode will then be moved out of the array to be quantified for spectral image formation [35,36].
One of the common CCD cameras is the silicon CCD camera. The silicon CCD camera exploits the
sensitivity of silicon under visible light to perform image acquisition in visible and short-wavelength
near-infrared bands [40]. Indium gallium arsenide (InGaAs) CCD camera is another CCD camera
variation constructed from InGaAs, an alloy between indium arsenide (InAs) and gallium arsenide
(GaAs) which is sensitive in the near-infrared band [41]. Not least, mercury cadmium telluride (MCT
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or HgCdTe) CCD camera built from HgCdTe, an alloy between mercury telluride (HgTe) and cadmium
telluride (CdTe), enables sensing in the long-wavelength near-infrared and mid-infrared band [42].

Comparatively, the CMOS camera is similar to the CCD camera by having a collection of
photodiodes (pixels) that convert light rays into electrical charges. The difference, however, lies in the
quantification process of the electric charges. Opposed to the remote quantification in the CCD camera,
the CMOS camera allows electric charges at each pixel to be independently and instantaneously read
by the transistor attached to each photodiode [43]. This unique characteristic allows the CMOS camera
to compete with the CCD camera in terms of high imaging acquisition speed, blooming immunity,
low cost, low power consumption and small size. However, careful note should be taken as the CMOS
camera is susceptible to noise due to on-chip signal transmissions, resulting in lower sensitivity and
dynamic range when pitted against CCD camera [36].

2.3.5. Spectral Imaging Processing and Analysis

The raw spectral image data obtained via the spectral imaging technique comes in different
formats according to the image acquisition method used. The common formats are Band interleaved
by pixel (BIP), band interleaved by line (BIL) and band sequential (BSQ). The BIP format results from
the point scan method and stores the complete spectrum of each pixel sequentially. The BIL format
comes with the line scan method and stores the complete spectrum of each line in order. Lastly, the BSQ
format relates to the area scan method and stacks the spatial image continuously obtained at each
wavelength [35,36].

Similar to the imaging and spectroscopy techniques, the raw spectral image data in BIP, BIL and
BSQ formats should undergo pre-processing in both the spatial and spectral aspects before being
utilized for further analysis. The raw spectral image, which represents detector signal intensity,
will first undergo flat-field calibration or reflectance calibration to form useful reflectance or absorbance
image. From the spatial aspect, the generated reflectance image can be further improved through
image enhancement processes such as edge and contrast enhancement, magnifying, pseudo-coloring
and sharpening. Noise reduction can also be achieved through spatial filtering, Fourier transform (FT)
and wavelet transform (WT). From the spectral aspect, noise reduction and baseline correction can
be performed through algorithms such as MSC, SNV, Savitzky-Golay smoothing, first and second
derivatives, FT, WT as well as orthogonal signal correction (OSC) [35,36].

The next step in the analysis flow will be image segmentation. Image segmentation serves
to divide the pre-processed spectral image into different regions for the identification of region of
interests (ROIs) [44]. In this process, segmentation algorithms are greatly preferred over manual
segmentation due to the ease of operation and time saving. The selections of segmentation algorithms
include thresholding (global thresholding or adaptive thresholding), morphological processing
(erosion, dilation, open, close or watershed algorithm), edge-based segmentation (gradient-based or
Laplacian-based methods) and spectral image segmentation [36].

Spatial analysis utilizing spectral image data usually involves quantitative measurement.
In this process, gray-level object measurement is performed to quantify the intensity distribution
of ROI extracted from image segmentation. Gray-level object measurements can be categorized
according to intensity-based or texture-based measurements [45]. Intensity-based measurements are
usually first-order measures such as mean [46,47], standard deviation, skew, energy and entropy [36].
Meanwhile, texture-based measurements are second-order measures such as joint distribution
functions [36], gray-level co-occurrence matrix (GLCM) [46,48] and 2-D Gabor filter [49].

For spectral analysis, the data set will undergo multivariate analysis to reduce the spectral
dimension and select the optimum wavelengths. Similar to the spectroscopy technique, some examples
of multivariate analysis algorithms include PLS, linear discrimination analysis (LDA) [35,36], correlation
analysis (CA) [50], PCA, ICA [41,51,52], ANN [53], sequential forward selection (SFS) [54] and GA [55].
These results from multivariate analysis will be used to develop calibration models for calibration,
validation and prediction purposes [36].
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The robustness of the final calibration model is evaluated from its ability to perform calibration
and prediction. The calibration performance of the model is determined from the standard error of
calibration (SEC), root mean square error of calibration (RMSEC) and the coefficient of determination
(r2

C) in the calibration set. Validation performance is determined via the root mean square error of
cross-validation (RMSECV) and the coefficient of determination (r2

V) in the validation set. Meanwhile,
the prediction performance of the model is identified from standard error of prediction (SEP), root
mean square error of prediction (RMSEP), residual predictive deviation (RPD) and the coefficient of
determination (r2

P) in the prediction set. Ideally, an effective model should register low SEC, RMSEC,
RMSECV, SEP and RMSEP, with a minimum difference between SEC and SEP. Not least, higher r2

C, r2
P,

r2
P and RPD are preferable [36].

2.3.6. Pros and Cons of Spectral Imaging

This technique is advantageous as it omits chemical processes and requires minimum sample
preparation. Moreover, the composition of multiple components in a sample can be simultaneously
obtained. Upon spectral image acquisition, spectral imaging too allows the flexible selection of region
of interest (ROI) for analysis. Furthermore, owing to the rich spatial and spectral information, spectral
imaging can easily detect and differentiate subjects even though similar colors, overlapping spectra
and morphological characteristics are present [36].

However, the spectral imaging technique does pose several limitations. Hardware speed is a major
concern, especially in the case of hyperspectral imaging, due to the massive amounts of data to be
acquired and analyzed. Moreover, spectral imaging includes the acquisition of redundant data, resulting
in complex data analysis. Spectral imaging systems too require constant calibration in order to maintain
their efficiency. The detection limits of spectral imaging are poorer compared to chemical-based
analytical methods. Similar to spectroscopy, spectral imaging suffers from multicollinearity and
requires multivariate analysis to address the issue. In addition, spectral imaging is inapplicable when
the ROI is smaller than the size of a pixel or does not exhibit the characteristic spectral absorption.
Lastly, spectral imaging may be irrelevant in the analysis of liquids and homogeneous samples since
these samples do not pose distinctive and useful spatial information [36].

2.4. Technique Comparison

Table 4 presents a simple comparison of the optics and photonics techniques in agriculture that
have been discussed earlier. From the comparison, the imaging technique is noted to be utilized for
the extraction of spatial information only and is sensitive to small-sized objects. In contrast to the
imaging technique, the spectroscopy technique allows acquisition of spectral information and is useful
in accessing multi-constituent information. The spectral imaging technique covers the benefits of
both imaging and spectroscopy techniques, allowing it to obtain spectral and spatial information
simultaneously. Apart from this, spectral imaging has the added value of flexible spectral extraction as
well as the capability of generating quality-attribute distribution. However, it should be noted that
multispectral imaging has poorer access to spectral information compared to hyperspectral imaging
due to the acquisition at limited number of wavelengths. Among the compared techniques, the spectral
imaging technique can be said to be the most robust. Nonetheless, the area of application should be
given the utmost consideration when selecting the best optics and photonic technique in order to avoid
the underutilization or overutilization of a particular technique [36].
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Table 4. Comparison of optics and photonics techniques in agriculture [36].

Characteristics Imaging Spectroscopy Spectral Imaging

Spectral information × � �

Spatial information � × �

Multi-constituent information × � �

Sensitivity to small-sized objects � × �

Flexibility of spectral extraction × × �

Generation of quality-attribute distribution × × �

3. Optics and Photonics Applications in Agriculture

The optics and photonics techniques discussed above have been applied in various studies
involving agricultural products. The studies will be tabulated in the following sections, enlisting
details such as agriculture class, agriculture product, application area, wavelength details and country
of applications.

3.1. Applications of Imaging Technique

Table 5 lists some of the agricultural works based on the imaging technique. The imaging
technique is performed in the UV-VIS-IR range and involves the acquisition of spatial, color and
thermal data from the inspected samples. These works show that the imaging technique is suited
for inspection or analysis based on external features of the subject of interest. For instance, bruise
detection [56,57] and disease detection [58,59] are performed by inspecting the external damage on
the sample. In addition, quantitative analysis [60,61] is performed using the spatial information
obtained. The color features extracted are also used for maturity evaluation [57,62,63] and nutrient
content detection [64,65]. The thermal data, meanwhile, proves to be useful in similar occasions of
bruise detection [66,67], disease detection [68,69] and maturity evaluation [70,71] by analyzing the
temperature variations over the inspected sample. Not least, the most significant application of the
imaging technique is the development of automated agricultural robots [72–75] and animal behavioral
studies [76,77].

Table 5. Applications of imaging technique in agriculture.

Class Product Application Ref.

Fruit Apple Bruise detection (thermal) [66,67,70,78]

Apple Maturity evaluation (thermal) [70]

Apple Yield estimation (thermal) [79]

Apple Scab disease detection (thermal) [68]

Green apple Acquisition of segmented fruit region [80]

Green apple and orange Yield estimation [61]

Orange Texture analysis [81]

Orange Bruise detection (thermal) [67]

Citrus Water stress evaluation (thermal) [82]

Pear Maturity evaluation (thermal) [71]

Banana Maturity evaluation [62]

Banana Maturity evaluation [63]

Persimmon Maturity evaluation (thermal) [71]

Passion fruit Mass and volume estimation [83]

Blueberry Bruise detection [56]

Grapevine Pathogen detection (thermal) [84]

Tomato Fruit detection [85,86]
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Table 5. Cont.

Class Product Application Ref.

Tomato Bruise detection and maturity evaluation [57]

Tomato Bruise detection (thermal) [87]

Tomato Maturity evaluation (thermal) [71]

Tomato Clustered fruit detection [88]

Sweet peppers Peduncle detection [89]

Onion Post-harvest quality assessment (thermal) [90]

Lettuce Segmentation of vegetable [91]

Cucumber Downy mildew disease detection (thermal) [69,92,93]

Grain Rice leaf Nitrogen content detection [64]

Wheat Yield estimation (thermal) [94–96]

Corn Water stress evaluation (thermal) [97]

Macadamia nuts Yield estimation [60]

Soybean Identification of foliar disease [98]

Soybean Identification of leaf disease [59]

Maize Yield estimation (thermal) [99]

Maize Identification of leaf disease [100]

Maize Cultivar identification [101]

Commercial Cotton Water stress evaluation (thermal) [97,102]

Silkworm Gender identification [103]

Farm and Plantation Seed Viability evaluation (thermal) [104]

Wheat field Estimation of nutrient content [65]

Cauliflower plantation Weed detection [73]

Asparagus plantation Crop harvest robot vision [74]

Sugar beet and rape plantation Agriculture robot vision [75]

Grapevines Estimation of intra-parcel grape quantities [105]

Cow farm Behavioural studies [76,106]

Goat and sheep farm Animal species identification [107]

Fish aquarium Behavioural studies [77,108]

Baby shrimp farm Chlorine level detection [109]

Orchid farm Disease and pest detection [58]

Surface and ground water Chemical content detection [110]

Based on Table 5, bruise detection, yield estimation, and disease identification are the three most
common applications with imaging technique in agriculture. In bruise detection, a hyperspectral
camera with broad operating wavelength from 400 to 5000 nm [78], a non-destructive and non-contact
infrared sensing thermogram [66], and an infrared thermal imaging camera with high temperature
resolution of 0.1 K [70] are among the instruments employed as the imaging technique. Moreover,
the thermal camera with temperature resolution better than 0.5 ◦C [79], colour stereo vision camera
which creates a 3D environment for further processing [86], and grading machine with a high accuracy
of 96.47% [57] are employed for yield estimation. However, the grading machine proposed in [57]
has a small capacity in estimation for 300 tomatoes per hour and does not efficiently work for
tomato images with high specular reflection. In addition, infrared thermography is a popular device
for disease identification due to its non-invasive monitoring and indirect visualization of downy
mildew development [69]. This device takes the colour reflectance image for the detection of V.
inaequalis development on apple leaves [68] and detects the pathogen in grapevines [84]. Additionally,
an X-ray computed tomography scanner is utilized to obtain the cross-section of onion inoculated by
pathogens [90], whilst an unmanned aerial vehicle (UAV) is presented to track the foliar disease in
soybean [98].
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Apart from the instrument, numerous types of algorithms are depicted in imaging technique.
In bruise detection, PCA and a minimum noise fraction are proposed for 20 apple samples with
threshold percentages of success within 86% to 93% and 87% to 97%, respectively [78]. In yield
estimation, the fruit detection algorithm is presented for 8–120 apple samples with a correlation
coefficient ranging from 0.83 to 0.88 [79]. In addition, the blob detector neural network is demonstrated
to detect the yield estimation for both oranges and apples with intersection over union of 81.3% for
orange and 83.8% for apple [61]. As for disease identification, a simple linear iterative clustering
algorithm is presented for 3624 foliar images with high classification rate of 98.34% for height between
1 to 2 m [98]. The classification rate is reduced for approximately 2% for each meter from the examined
height within 1 to 16 m. Moreover, an improved GoogLeNet and Cifar10 models are established for
500 images of maize leaf disease with 4:1 ratio for training and validation which allows the system to
have a diversity of sample conditions [100]. The average identification accuracy of GoogLeNet and
Cifar10 models is recorded as high as 98.9% and 98.8%, respectively. Apart from bruise detection,
yield estimation, and disease identification, algorithms are also shown in maturity evaluation and
acquisition of crop segmentation. In maturity evaluation, both a Fuzzy model [62] and medium filter
algorithm [85] are employed for 3108 images on banana samples and 100 images on tomato samples
with an average identification rate of 93.11%, and within 89% to 98%, respectively. The Fuzzy model is
useful in handling ambiguous information for the banana fruit maturity detection using red-green-blue
(RGB) components. In the acquisition of crop segmentation, K-mean clustering algorithm is presented
for a clustering of apple samples with target acquisition rate of 84% [80]. This algorithm is commonly
used in image segmentation whereby crop segmentation can be precisely attained, even with the
presence of stems and leaves in the captured images.

3.2. Applications of Spectroscopy Technique

The applications of spectroscopy technique in agriculture are presented in Table 6. The spectroscopy
technique is widely applied to inspect internal qualities that are externally invisible. A sizeable amount
of research has performed spectroscopy in the UV-VIS-IR region to identify the internal constituents of
agricultural products such as pigment compound in apple [111], moisture content in mushroom [112],
protein and sugar in potato [113], and caffeine in coffee [114] among others. Within 400 to 1000 nm,
678 nm is sensitive to low chlorophyll content thus the reflectance at 678 ± 30 nm is suggested for the
monitoring of the early stage of ripening and the pigment content change with a maximum correlation
of closely 0.6 [111]. On the other hand, 590 to 700 nm is recommended for the maturity detection in
early stage for yellow colour apple fruits with maximum correlation from 0.7 to 0.9. In the verification
of moisture content in mushroom, the spectral region from 600 to 2200 nm gives the lowest standard
deviation of cross validation as 0.644% and maximum correlation factor of 0.951 among the investigated
wavelengths from 402 to 2490 nm [112]. A high experimental repeatability is presented by a standard
deviation of 0.677% and a maximum correlation factor of 0.947 for a separate set of mushrooms of
a similar type and treatment. In the protein and sugar content identification in potato, a modified
PLS regression model is applied to calculate the relationship between the spectrum and chemical
properties of the calibrated samples [113]. Based on the measurement, the standard deviations for
crude protein, glucose, fructose, sucrose and red sugar for the 120 potato samples are 0.2%, 0.073%,
0.068%, 0.068%, and 0.122%, respectively. Correspondingly, the squared correlation coefficient for the
above five parameters are deduced as 0.96, 0.70, 0.89, 0.62, and 0.82, respectively. In a total of 665 tea
leaf samples, NIRS and liquid chromatography is coupled to a diode arrayed detector to determine its
content of caffeine [114]. Among 375 calibration sets and 250 validation sets for caffeine in the tea leaf
samples, a standard deviation of 8.6 and 8.9, as well as high squared correlation coefficients of 0.97 are
acquired for both calibration and validation sets though regression model.

The quality and freshness of fruits [115,116], vegetables [117], and meat [118,119] can be easily
inspected using spectroscopy as well. For instance, two wavelengths within 600 to 904 nm of VIS-NIR
spectrum are investigated by correlation analysis to discriminate brown core and sound pears [115].
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Using eight brown core pears and 32 sound pears, the percentage of soluble solid content achieves
a precision of 97.8% and 99% within a standard deviation of 0.5% and 1%, respectively. In addition,
NIR spectrum and PLS regression model are used to detect the total anthocyanins content (TAC) and
total phenolic compounds (TPC) in jambu fruits [116]. With a total of 50 jambu samples scanning
from 1000 to 2400 nm, the correlation coefficients of TAC and TPC are deduced as 0.98 and 0.94,
and strong ratio to performance of deviation as 5.19 and 3.27, respectively. Besides that, a 250 to
350 GHz radiation is found to be suitable to distinguish the defective and proper sugar beet seeds [117].
A python package scikit-learn algorithm is used to determine the threshold for these two types of
seeds, with 80% detection for proper seed and 94% detection for defective seed. Therefore, the average
detection rate of this algorithm is 87%. In addition, meat fraud is injected into bovine meat, aiming
to increase the water holding capacity. This issue is characterized with attenuated total reflectance
Fourier transform infrared spectrum and the supervision of the 55 meat fraud adulterated samples
through PLS square discriminant analysis [118]. The analysis records a precise detection as high as
91% of the adulterated samples. Apart from meat fraud, the freshness of mackerel fish is characterized
with auto-fluorescence spectroscopy and analyzed with fluorescence excitation emission matrices
(EEM) [119]. The fluorescence EEM data and real freshness values are modelled with PLS regression
and an algorithm is developed for this smart system as a predictor with squared correlation coefficient
of 0.89.

Furthermore, chemical residues in harvested product [120] or even plantation soil [121–123] can
be easily identified, leading to easy detection on contamination of agricultural product. Residual
pesticides such as phosmet and thiabendazole in apples are analyzed with surface-enhanced Raman
spectroscopy (SERS) coupled with gold nanoparticle [120]. The sensitivities for detectable concentration
are 0.5 μg/g for phosmet and 0.1 μg/g for thiabendazole. The PLS regression is also used to correlate
the SERS spectrum with the concentration of pesticide in apples with squared correlation coefficient of
0936 for phosmet and 0.959 for thiabendazole. In addition, the effect of drying temperature on the
nitrogen detection in soils at four different temperatures of 25 ◦C for placement, 50, 80, and 95 ◦C
for drying is modelled based on NIR sensor and three successive algorithms, which are multiple
linear regression, PLS, and competitive adaptive reweighed square on the spectral information [122].
Based on the three soil samples, loess, calcium soil, and black soil show the correlation coefficients
of 0.9721, 0.9588, and 0.9486, respectively at the optimum drying temperature of 80◦C. The detection
of nitrogen in three types of soils is also alternatively performed in [123], with squared correlation
coefficients of 0.95, 0.96 and 0.79 for loess, calcium soil and black soil using PLS regression model.
The relatively lower squared correlation coefficient in black soil is due to the interference of high humus
content and strong absorption of organic matter in black soil. Lastly, a point worth noting is that the
dielectric and NMR spectroscopy are often adopted when the analysis involves more complex chemical
compounds [124,125]. These complex chemical compounds include the vulcanization of natural rubber
with sulfur-cured and peroxide-cured systems with different dynamics [124] and detection to changes
in concentrations of pollutants in agriculture drainage such as heavy metal and heavy oxides [125].
In [124] a sulphur-cured system has features restricted segmented dynamics whereas peroxide-cured
system has faster dynamics. In addition, network structure resulting from the vulcanization of both
systems also influences the segmental dynamics of natural rubber. The peroxide-cured network is
more homogeneous with spatial distribution of cross links than the sulphur-cured network with large
inhomogeneity due to the presence of zinc oxide particles and the ionic interaction with the natural
rubber chains. In [125], an X-ray fluorescence spectroscopy is employed to investigate the changes
of pollutants in dried root and shoot plant parts at a temperature range from 30 to 90 ◦C. From the
measurement, the concentration of pollutant is found to be higher in plant root than plant shoot
through the analysis of frequency relaxation process via dielectric modulus measurement. Significantly,
the removal of pollutants by plants will be enhanced upon subjecting them to a microwave heating
power of 400 W for 30 min. Apart from the aforementioned applications, more applications of the
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spectroscopy technique in agricultural products with different methods and wavelengths are tabulated
in Table 6.

Table 6. Applications of spectroscopy technique in agriculture.

Class Product Application Method Wavelength (nm) Ref.

Fruit Apple Pigment content change during
ripening

UV-VIS-NIR 400–1000 [111]

Apple Soluble solid content detection VIS-NIR 500–1100,
1000–2500

[33]

Apple Pesticide residue detection Raman 5–18 μm [120]

Pear Brown core and soluble solid
content detection

UV-VIS-NIR 200–1100 [115]

Mango Maturity evaluation NIR 1200–2200 [126]

Peach Peach variety identification NIR 833–2500 [127]

Wax jambu Quality inspection NIR 1000–2400 [116]

Grape leaf Water content estimation UV-VIS-NIR 350–2500 [128]

Vegetable Carrot Carotenoid, fructose, glucose,
sucrose and sugar content

detection

NIR 1108–2490 [129]

Potato Bruise detection UV-VIS-NIR 250–1750 [130]

Potato Protein, fructose, glucose, starch
and sucrose content detection

NIR 1100–2500 [113]

Onion Soluble solid content detection VIS-NIR 500–1200 [131]

Oilseed rape
leaf

Aspartic acid content detection NIR 1100–2500 [132]

Sugar beet
seeds

Quality control Time-domain
spectroscopy

250–350 GHz [117]

Mushroom Moisture content detection VIS-NIR 600–2200 [112]

Grain Corn seed Viability evaluation NIR
Raman

1000–2500
3.125–59 μm

[133]

Almond Internal defect detection VIS-NIR 700–1400 [134,
135]

Maize Identification of transgenic
ingredients

THz spectral 0–4.5 THz [136]

Rice, maize and
peanut

Germination and growth of crop UV-VIS
FTIR

380.85–796.62 nm
562.72–3865.11 cm−1

[137]

Meat Beef Thermal change inspection Fluorescence 250–550 [138]

Beef Adulteration detection NIR-MIR 2.5–19 μm [118]

Frozen fish Freshness evaluation Fluorescence 250–800 [119]

Dairy Egg Contamination detection UV-VIS-NIR 200–860 [139]

Goat milk Fatty acid content detection VIS-NIR 400–2498 [140]

Oil Edible oil Stability analysis NMR 300 MHz (1H) [141]

Olive oil Adulteration detection Fluorescence 250–720 [142]

Ocimum
essential oil

Antioxidant property
identification

NIR-MIR 2.5–18 μm [143]

Beverage Tea leaf Tea polyphenol level detection UV-VIS-NIR 347–2506 [144]

Green tea leaf Caffeine and catechins content
detection

VIS-NIR 400–2500 [114]

Coffee Geographic and genotypic origin
identification

NIR 1100–2498 [145]

Coffee Roasting degree and blend
composition detection

NIR 800–2857 [146]

Tomato juice Quality inspection NIR-MIR 2.5–14 μm [147]

Apple wine Volatile compound detection NIR 833–2500 [148]

Rice wine Fermentation monitoring NIR-MIR 2.5–25 μm [149]
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Table 6. Cont.

Class Product Application Method Wavelength (nm) Ref.

Commercial Cotton fibre Cotton type identification NIR 800–2500 [150]

Cotton fibre Cotton fibre micronaire
measurement

VIS-NIR 400–2500 [151]

Natural rubber Protein and lipid content
detection

NIR-MIR 2.5–25 μm [152]

Natural rubber Chemical interaction during
vulcanizing process

NIR-MIR
Raman

2.5–25 μm
3.125–100 μm,

6.25–50 μm

[153]

Natural rubber Rubber silane reaction NMR 400 MHz (1H),
100.6 MHz (13C)

[154]

Natural rubber Moisture content detection VIS-NIR 400–1100 [155]

Natural rubber Vulcanization system effect Dielectric
NMR

10-1 < Hz < 107
20 MHz (1H)

[124]

Neem leaf Pest control UV-VIS
FTIR
XRD

200–800 nm
250–4000 cm−1

10–80◦

[156]

Farm and
Plantation

Soil Quality inspection NIR 780–5000 [157]

Soil Nitrogen content detection NIR 800–2564 [158]

Soil Chemical and physical property
estimation

NIR-MIR 1430–2500,
2.5–27 μm

[159]

Soil Nitrogen detection NIR 900–1700 [122]

Soil Nitrogen detection NIR 900–1700 [123]

Soil and water Contaminant detection VIS-NIR 400–2500 [121]

Water hyacinth
Soybean straw

Pollutant concentration detection
Detection of biomass

Dielectric
Fluorescence
Near infrared
spectroscopy

10-1 < Hz < 106
N/A

4000–12,000 cm−1

[125]
[160]

Flower Plant type identification VIS 635, 685, 785 [161]

3.3. Applications of Spectral Imaging Technique

As discussed earlier, the spectral imaging technique is a combination of both imaging and
spectroscopy techniques. In the agriculture industry, both variations of hyperspectral and multispectral
imaging are equally crucial, and some sample applications are compiled in Table 7. As observed from
Table 7, hyperspectral imaging involves acquisition over a range of wavelengths while multispectral
imaging involved acquisition at fewer selected wavelengths. The robustness of spectral imaging allows
its usage in bruise detection [78,162,163], maturity evaluation [164–168], quality evaluation [169–171]
and disease detection [172–176]. Internal attributes of samples [177–179] are easily acquired for analysis
purposes as well.

In bruise detection of agriculture product, a machine vision system is integrated with optical filter
at 740 and 950 nm to detect the bruise in rotating apple with a detection accuracy of 90 to 92% from 54
Pink Lady apples and 60 Ginger Gold apples [162]. In addition, the bruise detection in mushroom is
carried out through a line scanning hyperspectral imaging instrument from 400 to 1000 nm with a
spectroscopic resolution of 5 nm [163]. The PCA is applied to a set of data comprising of 50 normal
and 50 bruise spectra, with standard deviation of 0.025 and 0.055, respectively.

For the maturity evaluation of agriculture products such as peach fruit, a CCD camera is employed
at 450, 675 and 800 nm, whereas the fruit ripening is characterized with the increasing in intensity from
a histogram with a ratio of red divide with infrared red (R/IR) [164]. The firmness of the peach fruit
reduces when the reflectance at 675 nm is increased. An analysis of variance (ANOVA) is presented to
access the R/IR clustering which has the highest reflectance at 675 nm, and higher Fisher value as a
function of higher R/IR ratio. Apart from the detection of maturity for peach fruit, the maturity stage
of strawberry is detected using a hyperspectral imaging system from 380 to 1030 nm and from 874 to
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1734 nm [165]. According to the PCA, the optimal wavelengths are from 441.1 to 1013.97 nm and from
941.46 to 1578.13 nm with a classification accuracy of above 85%. Moreover, the maturity of tomato is
detected by an electromagnetic spectrum with a continuous 257 bands from 396 to 736 nm [166] and
discrete band of 530, 595, 630, and 850 nm using a tomato maturity predictive sensor [167]. Based on
the LDA, the classification error is reduced from 51% to 19% [166] and achieves detection accuracy
above 85% [167]. The ripening in banana fruit is also characterized with a compact imaging system
and an UAV from 500 to 700 nm [168]. The detection is based on the reflectance spectrum whereby in
ripe banana, the main element is carotenoid which absorbs less light at 650 nm band. On the other
hand, a green banana with a greater amount of chlorophyll than ripe banana absorbs more light at
650 nm band.

For the quality evaluation of agriculture product, the firmness test for two types of apple fruits
is conducted with a laser-based multispectral imaging prototype which captures and processes four
spectral scattering images at a speed of two fruits per second [169]. The multilinear regression models
are developed using to predict the firmness of those two apple types at 680, 880, 905, and 940 nm
with a correlation coefficient of 0.86. The quality of grape berries is determined by the reflectance
spectrum from a hyperspectral imaging system, whilst the high reflectance at 500 nm, 660 to 700 nm,
and 840 nm denotes the chlorophyll content, red-coloured anthocyanin pigment, and sugar content,
respectively [170]. A partial least square regression (PLSR) model is applied in order to determine
the correlation between the spectral information and the physico-chemical indices. The titratable
acidity of the green and black grapes shows a coefficient of determination of 0.95 and 0.82, as well as
soluble solid content of 0.94 and 0.93 at pH value of 0.8 and 0.9, respectively. The root mean square
error for this method is 0.06 for green grape and 0.25 for black grape. Apart from fruits, the quality
of tea leaves is classified by a hyperspectral imaging sensor at 762, 793, and 838 nm, supported by
SVM algorithm [171]. Within 700 samples comprising of 500 training samples and 200 prediction sets,
the SVM algorithm generates a total classification rate of 98% the training sample and 95% for the
prediction set, at result of optimal regularization parameter of 4.37349 and kernel parameter of 13.2131
in SVM model.

For the disease detection in agriculture product, a fruit sorting machine is used to detect the citrus
canker at 730 and 830 nm with a bandpass filter installed in the scanning camera [172]. A real-time
image processing and classification algorithm is developed based on a two-band ratio (R830/R730)
approach, which achieves a detection accuracy of 95.3% for 360 citrus samples. Next, a shortwave
infrared hyperspectral imaging system is used to detect the sour skin in onion based on the suitable
reflectance spectrum from 1070 to 1400 nm [173]. Two image analysis approaches are utilized based
on the log-ratio images at two optimal wavelengths of 1070 and 1400 nm. A global threshold of
0.45 is integrated to segregate sour onion skin infection areas from log-ratio images. With Fisher’s
discriminant analysis, the detection accuracy of 80% is achieved. The second image analysis approach
is the incorporation of three parameters; max, contrast and homogeneity of the log-ratio images as the
input features for the SVM. Subsequently, the Gaussian kernel generates higher detection accuracy as
87.14%. Apart from that, the tumorous chicken is detected by the combination of a CCD camera and
imaging spectrograph from 420 to 850 nm [174]. Within the wavelength bands, the PCA select the three
useful wavelengths of 465, 575, and 705 nm from the tumorous chicken image. Based on the images
from 60 tumorous and 20 normal chicken, multispectral image analysis generates the ratio images,
which are divided into ROI classified either as tumorous or normal chicken. The image features from
ROI such as coefficient of variation, skewness and kurtosis are extracted as the input for the Fuzzy
classifier, which generates the detection accuracy of 91% for normal chicken and 86% for tumorous
chicken. To detect the nematodes in coffee cultivation, hyperspectral data is used in band simulation of
the RapidEye sensor to determine the most sensitive spectral ranges for pathogen discrimination in
coffee plants [176]. Multispectral classification identifies the spatial distribution of healthy, moderately
infected, and severely infected coffee plants with an overall accuracy of 71%. Apart from the four
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main applications with the spectral imaging technique in agriculture products, more applications with
different scanning methods and various wavelengths are tabulated in Table 7.

Table 7. Applications of spectral imaging technique in agriculture.

Class Product Application Method Wavelength (nm) Ref.

Fruit Apple Bruise detection Hyper. line scan 400–2500,
1000–2500

[78,180]

Apple Bruise detection timing Hyper. line scan 400–2500 [181]

Apple Bruise detection Multi. area scan 740, 950 [162]

Apple Bruise and faeces detection Multi. line scan 530, 665, 750, 800 [182]

Apple Firmness evaluation Multi. area scan 680, 880, 905, 940 [169]

Citrus Canker detection Multi. area scan 730, 830 [172]

Peach Firmness evaluation Hyper. line scan 500–1000 [183]

Peach Maturity evaluation Multi. area scan 450, 675, 800 [164]

Cantaloupe Faeces detection Hyper. line scan 425–774 [184]

Blueberry Firmness evaluation, soluble
solid content detection

Hyper. line scan 400–1000 [177,185]

Strawberry Maturity evaluation Hyper. line scan 380–1030
874–1734

[165]

Cherry Pit detection Hyper. line scan 450–1000 [186]

Grape Quality evaluation Hyper. line scan 400–1000 [170]

Banana Maturity evaluation Hyper. area scan 500–700 [168]

Tomato Maturity evaluation Hyper. line scan 396–736 [166]

Tomato Maturity evaluation Multi. area scan 530, 595, 630, 850 [167]

Cucumber Chilling injury detection Hyper. line scan 447–951 [187]

Vegetable Freeze-dried
broccoli

Glucosinolate detection Hyper. line scan 400–1700 [188]

Potato Cooking time prediction Hyper. line scan 400–1000 [189]

Onion Sour skin disease detection Hyper. area scan 950–1650 [173]

Mushroom Bruise detection Hyper. line scan 400–1000 [163]

Grain Rice plant Nitrogen content detection Hyper. line scan 400–1000 [190,191]

Thai jasmine
rice

Rice variety identification Multi. area scan 545, 575 [192]

Wheat Fungus detection Hyper. area scan 1000-1600 [193]

Wheat Damage detection Hyper. line scan 1000–2500 [194]

Peanut Tomato spot wilt disease
detection

Multi. Area scan 475, 560, 668, 717, 840 [195]

Corn Oil and oleic acid content
detection

Hyper. area scan 950-1700 [196]

Corn Aflatoxin detection Hyper. line scan 400–600 [197]

Meat Chicken Skin tumour detection Hyper. line scan 420–850 [174]

Chicken Heart disease detection Multi. area scan 495, 535, 585, 605 [198]

Chicken Faeces detection Multi. area scan 520, 560 [199]

Chicken Wholesomeness inspection Multi. line scan 580, 620 [200]

Beef Tenderness evaluation Hyper. line scan 400–1000 [201]

Beef Microbial spoilage detection Hyper. line scan 400–1100 [202]

Lamb Lamb variety identification Hyper. line scan 900–1700 [203]

Pork meat E. coli detection Hyper. line scan 470–960 [204]

Pork meat Quality inspection Hyper. line scan 900–1700 [205]

Fish Moisture and fat content
detection

Hyper. line scan 460–1040 [206]

Fish Ridge detection Hyper. line scan 400–1000 [207]

Salmon Microbial spoilage detection Hyper. line scan 400–1000
880–1720

[208]

468



Molecules 2019, 24, 2025

Table 7. Cont.

Class Product Application Method Wavelength (nm) Ref.

Dehydrated
prawn

Moisture content detection Hyper. line scan 380–1100 [209]

Prawn Adulteration detection Hyper. line scan 380–1030
900–1700

[210]

Dairy Milk powder Melamine detection Hyper. line scan 990–1700 [211]

Milk Fat content detection Hyper. line scan 530–900 [178]

Milk Melamine detection Hyper. point scan 4–98 μm [212]

Oil Olive oil Free acidity, peroxide and
moisture content detection

Hyper. line scan 900–1700 [179]

Beverage Tea Quality inspection Hyper. line scan 408–1117 [171]

Tea Moisture content detection Hyper. line scan 874–1734 [213]

Tea Tea variety identification Multi. area scan 580, 680, 800 [214]

Farm and
Plantation

Tea bush Tea variety, growth status and
disease identification

Hyper. area scan 325–1075 [175]

Coffee crop Detection of disease/infection Hyper. area scan 440–850 [176]

Coffee
plantation

Monitoring chlorophyll content Multi. area scan 490–2190 [215]

Note: Hyper. = hyperspectral, multi. =multispectral.

4. Photonics Techniques Implementation in Food Safety Inspection and Quality Control

Food safety inspection and quality control is important for ensuring the high quality of agriculture
products. To meet this criterion, photonics techniques have been extensively implemented into
numerous applications. For instance, clean drinking water is undeniably one of the most important
elements to sustain the organisms’ life. Contamination may happen when treated drinking water
is travelling in the distribution system to the consumer, whilst the sensitivity to the inhibitor of
contamination can be measured by the elevated dissolved organic matter (DOM) at the tap relative
to the water leaving the treatment plant [216]. Across a biologically stable drinking water system,
humic-like fluorescence (HLF) intensities of less than 2.2% relative standard deviation are measured
after accounting for quenching by copper. In addition, a minor infiltration of a contaminant is detectable
by sewage with a strong tryptophan-like fluorescence (TLF) signal thus validating the potential of DOM
fluorescence in detecting the water quality changes in drinking water system. Moreover, fluorescence
spectroscopy was demonstrated in evaluating the microbial quality of untreated drinking water
through online monitoring [217]. The DOM peaks are targeted at excitation and emission wavelengths
of 280 and 365 nm for TLF, as well as 280 and 450 nm for HLF. Both TLF and HLF are strongly correlated
to micro-bacterial cells such as E. coli with a correlation coefficient of 0.71 to 0.77. In comparison to
turbidity for E. coli with correlation coefficient of only 0.4 to 0.48, the DOM sensor appears to be a better
indicator for micro-bacterial cells in untreated drinking water. Apart from the DOM sensor, an optical
sensor was proposed to differentiate the particles in drinking water as either bacteria or abiotic particles
with an accuracy of 90 ± 7% and 78 ± 14% for monotype and fix-type suspensions, respectively, based
on a 3D image recognition and classification algorithm [218]. In addition, this optical sensor can
detect micro-particles with minimum size of 0.77 μm. Significantly, the aforementioned optical sensors
incorporating photonic techniques serve as an early warning for drinking water pollution.

Photonics and optics have also recently gained popularity in the quality inspection of food product.
This is because food inspection in the production line needs to be carried out at fast speed and a
very fast monitoring system is needed. Food inspection can become even more challenging when
it is dealing with large quantities of sample moving very quickly on the conveyor belt. Therefore,
high speed and high sensitivity optical system will be very suitable for the online monitoring and
inspection of food product. For example, research work on UV-visible-NIR optical spectroscopy have
been carried out extensively in the monitoring of extra virgin olive oil [219], honey [220], tea [221],
dairy product [222] and alcoholic beverages [223]. However, as these works focus on wavebands below
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1100 nm, the results and consistency of the conclusions may be easily affected by ambient lighting
conditions and the change in color of the beverages or product. Therefore, more research work shall be
carried out to characterize these food products in the NIR (>1100 nm) and MIR wavebands in order to
obtain the optical “fingerprint” that correlates to the quality and food safety level of the product.

In addition, food preservative exceeding the allowable limit has been a critical issue in ensuring
the health of the public. Butylated Hydroxytoluene (BHT) is commonly used as an antioxidant agent
in canned food or bottled beverages. Several optical sensing techniques such as optical spectroscopy
and fluorescence may be able to detect the concentration of BHT. BHT is also commonly known as
2,6-ditertiarybutyl-para-cresol (DBPC). Recently, Leong et al. [224] reported the detection of DBPC in
transformer oil using optical spectroscopy at waveband near to 1403 nm. This opens up the opportunity
of detecting the concentration of BHT in canned food or bottled beverages, leading to an online
monitoring system that uses the optical spectroscopy method.

Due to the lack of attention paid during the preparation processes or due to the contamination of
water and environment, hazardous residual materials are occasionally found in food. These hazardous
materials include heavy metal, pesticides and antibiotics. Conventionally, the screening process or food
safety inspections were carried out using laboratory-based equipment or measurement methods such as
gas chromatography (GC), GC-mass spectrometry and high-performance liquid chromatography [225].
However, these methods only allow inspection based on sampling due to the high cost and long
result waiting time. In this context, optical detection methods such as optical spectroscopy, Raman
spectroscopy and fluorescence can be explored for their possible utilization in the online monitoring of
food products in order to ensure that they are free of hazardous residual materials.

5. Photonics Techniques Implementation in Tropical Countries Agriculture

Blessed with wide spans of fertile soil, rich marine ecology, abundant rainfall and a tropical
climate, tropical countries are exceptionally suited for a myriad of agricultural activities [226–228].
Agriculture activities boost the country’s economy by supplying food sources and industrial raw
materials. This sector also provides income to farmers, raising their living standards in rural areas.
An example of tropical countries with active agricultural activities is Malaysia. Dating back to the
early years following Malaysia’s independence in 1957, the agriculture sector has been a signifficant
driver towards socio-economic development in Malaysia. However, in the early 1980s, the growth
of the agricultural field came to an abrupt halt due to the sharp decline in commodity prices,
limited technical specialty, volatile rubber prices and lack of incentives [229,230]. Industrialization
soon became the leading economic sector, with great focus directed towards manufacturing and
services [230]. Fortunately, the agriculture sector is once again emphasized upon the Asian financial
crisis in 1997, acting as a measure to minimize external economic shock by first strengthening the
domestic economy [227,231]. Since then, agriculture has always been a major agenda item of Malaysian
economic plans, with a recent target directed towards modernizing agriculture as drafted in the
Eleventh Malaysia Plan [232]. To date, amidst industrial developments, Malaysia has approximately
4.06 million hectares of agricultural land, with 80% allocated for commercial crops such as palm oil,
rubber, cocoa, coconut and pepper [229,233], while a portion of the remaining 20% was utilized for
the cultivation of agro-food crops [226]. These remarkable statistics have validated the potential of
a tropical country to develop its agricultural sector. Apart from Malaysia, other tropical countries
such as Indonesia and Thailand are also actively involved in agriculture activities. The following
sections will discuss some of the agricultural crops in tropical countries in which optics and photonic
techniques can be easily integrated for automated plantation management, yield increment, quality
inspection and disease control.

5.1. Implementation in Palm Oil-Related Activities

Palm oil is an extremely valuable commercial crop in tropical countries. Palm oil, which is
extracted from oil palm, is often used as raw materials for the production of biofuel, biofertilizers,
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oleochemicals, biomass products, nutraceuticals and pharmaceuticals. In fact, tropical countries are
among the global leaders in the palm oil industry [234]. The implementation of optics and photonic
techniques in palm oil-related activities will maintain the competitive power of the tropical countries
in the field and help to reap the associated economic benefits.

The implementation of optics and photonics techniques in oil palm related activities can start
from the development of agriculture robots. The development of an agriculture robot involves the
implementation of the imaging technique in its operation. Spatial and color information attained by
the agriculture robot through the imaging technique will greatly improve the efficiency of palm oil
plantation management. Automated palm oil fruit harvest is potentially applicable by pinpointing
the fruit position as presented in [72,74,75] for other crops. Besides, automated weed detection and
removal [73] as well as automated fertilizing can be performed using the developed agriculture robot.

In addition, palm oil quality is governed by fatty acid, moisture and peroxide contents. Microbial
or oxidation reactions that take place during the storage of oil palm fruit may modify these contents,
resulting in a depreciation of palm oil quality [235]. Under common operations, palm oil plantations
are usually distanced further away from refinery factories. Bulk transport of palm fruit upon reaching
the necessary processing quota is often practiced for cost savings. As a result, palm fruits that have been
harvested earlier will be stored in dedicated storage spaces. The time difference between harvesting
and processing greatly increases the risk for microbial or oxidation reaction to take place. In this
scenario, spectroscopy or spectral imaging can be implemented in the palm oil extraction stage to
perform oil quality segregation. This will greatly prevent contamination of low-quality palm oil in
further downstream processes, promoting process efficiency and increasing palm oil yield.

Another area in which optics and photonics techniques may be applied for oil palm activities is
disease detection. The most devastating diseases that attack palm oil plantations in South East Asia are
basal stem rot (BSR) and upper stem rot (USR). These diseases result in certain death of oil palms if not
controlled effectively, resulting in yield loss and disrupting the plantation cycle. These fatal diseases are
identified to be caused by the Ganoderma boninense (G. boninense) fungus. However, the identification of
the root cause of these diseases is still insufficient as they cannot be controlled even with the slightest
delay in infection detection [236]. In this area, spectral imaging presents itself as one of the possible
alternatives to perform early detection of the G. boninense fungus [237]. Samples of suspicious fungi
in the palm oil plantation can be simultaneously collected and analyzed to identify the presence of
disease-causing G. boninense. From here, preventive measures can be effectively performed to curb any
possible disease spreading.

5.2. Implementation in Natural Rubber Related Activities

Natural rubber is an important commodity that finds it place in the manufacturing of various
household, industrial and medical products. Rubber tree plantations have been widely established in
the fertile soils of tropical countries. The usage of optics and photonic techniques will again prove to
be beneficial in this area.

The simplest idea will again start from the usage of agriculture robots during the plantation stage.
In the context of rubber tree plantations, the imaging technique will provide visual guidance for the
agriculture robots to perform the scheduled collection of field latex. The usage of these robots will
gradually replace manual latex collection done by rubber tappers. This approach will address the
decline in manpower to maintain rubber tree plantations.

Meanwhile, the spectroscopy technique can be utilized in the later rubber processing stages.
The first application would be rubber quality grading. For instance, cup lump raw rubber, which is
an important material in tires, seal strips, conveyor belts and other moulded rubber products, can be
graded by using VIS-NIR spectroscopy to inspect the moisture content of the rubber. This spectroscopic
approach is fast, accurate and more reliable compared to manual inspection through sight and
touch [155]. Similarly, the protein and lipid contents in natural rubber can be detected through NIR-MIR
spectroscopy to enable grading [152]. Lastly, spectroscopy variations, such as NIR-MIR, Raman,
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dielectric or NMR, can be opted to study the structure and properties of rubber during vulcanization.
Such studies allow the analysis and selection of accelerators, activators and retarders, leading to
improved characteristics in the vulcanized rubber and an optimized vulcanizing process [124,153].

5.3. Implementation in Agro-Food Crops Related Activities

It is important to increase food production and achieve a self-sufficiency level (SSL) for a growing
country to become an advanced country. Currently, the agro-food crops in tropical countries comprise
of grains, organic fruits and vegetables, herbs and spices, livestock and fisheries [232,234]. By referring
to some of the applications stated in Sections 3.1–3.3, optics and photonic techniques can once again
improve the overall quality and yield of these crops.

Starting from grains such as rice and corn, crop harvest [72] and weed removal [73] can be easily
performed by agriculture robots with imaging capabilities. Thermal imaging can be conducted to
evaluate water stress in crops for irrigation control [97]. Moreover, the development of mobile phone
application to perform color-based identification of nitrogen content in rice and corn plant is another
interesting idea. The usage of such applications promotes the portable and on-site analysis of fertilizer
requirements in crop fields [64].

At the same time, all three optics and photonic techniques discussed earlier can be fully utilized
to inspect the harvested organic fruits and vegetables for quality evaluation. For instance, imaging
in either VIS or IR region is useful in detecting external damage or bruises in mangosteens, wax
jambus, cherry tomatoes and more. Spectroscopy may be performed as well to inspect internal features
or maturity of fruits and vegetables. Not least, spectral imaging may be considered when spatial
and spectral information are required simultaneously for quality evaluation. Meanwhile, the quality
inspection of meat products, such as chicken, beef, lamb, and fish among others, is strongly preferred to
be performed using spectroscopy or spectral imaging. These two techniques are suitable for identifying
the microbial spoilage of meat products due to their ability to obtain spectral information. With the
integration and application of optics and photonics in the agriculture industry, it is anticipated that the
agricultural products in the tropical countries will meet the public expectation of higher food quality.

5.4. Possible Challenges

The prevailing research challenges of integrating optics and photonics techniques into the
agriculture field are the reliability issue of the laser source and sensor, effect of the ambient environmental
condition into optics system, and expensive semiconductor materials at operating wavelength from
short to mid-IR range. First and foremost, the illumination intensity of the laser and the sensitivity of
the sensor may change over time, which leads to the need for recalibration of the system. Therefore,
more research is required in terms of the design and fabrication of a more reliable laser source, sensor
and optical detector. In addition, the effect of the ambient condition such as humidity, surrounding
temperature, and dust particles could be a hindrance in ensuring consistent results obtained from the
optical system. Hence, research into the minimization of these effects on the optical system is significant
to improve the system performance such as higher sensitivity, lower systematic error and maintenance
rate. Moreover, silicon is well-known for its optimum wavelength operation below 1000 nm. From short
to mid-IR range, examples of more viable semiconductor materials are gallium antimonide and indium
gallium arsenide. The investigation in terms of generating a higher efficiency using these materials for
a cost-effective solution creates the research opportunities for further exploration in both simulation
and experimental works.

Apart from the research challenges, the main challenge in introducing the discussed optics and
photonic techniques into the field of agriculture in tropical countries would be gaining the acceptance
of farmers, fisherman and smallholders. The introduction of modern technology and new agriculture
practices often raises concerns surrounding their technical and economic feasibilities. Farm and
plantation owners will prefer traditional agriculture practices as newly introduced technologies are
often regarded to be more suited to a controlled laboratory environment. In this scenario, technology
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vendors should ensure that complete field testing has been done in the environment where the
technology will be introduced. A probationary period may also be set to allow owners to try out and
experience the benefits brought forth by the proposed technologies.

The next challenge would be on financial limitations. In general, the cost to fully implement optics
and photonics techniques in existing agriculture activities may be a burden to the owners, especially
those involving sophisticated optical tools. This deterring factor may be mitigated if financial aids are
provided to the owners. In this case, the government of tropical countries should set the right path
by providing funds to the owners through attractive policies. For instance, a loan policy of flexible
repayment based on harvest cycles is more attractive compared to one of fixed term financing since
owners are now presented with flexible loans [232].

Lastly, another challenge lies with the need of technical support. When introducing the optics
and photonic techniques, technical training should be provided to farm and plantation workers in
order to familiarize them with the operations of new tools. At the same time, advisory and technical
services should be easily available in case the agriculture tools experience downtime or require
scheduled maintenance.

6. Conclusions

In conclusion, optics and photonics exhibit great benefits if they are integrated into the agricultural
industry. A complete knowledge of the behaviors and properties of light upon light-material interaction
allows the quantitative and qualitative analysis of agriculture products. In general, optics and photonic
techniques for agricultural purposes can be categorized into imaging, spectroscopy and spectral imaging
techniques. The imaging technique is effective in collecting spatial, color and thermal information,
whereas the spectroscopy technique is essential for collecting spectral information. Meanwhile, spectral
imaging is a combination of both imaging and spectroscopy techniques, allowing the collection of
a complete data set. These three optics and photonic techniques have been utilized in agriculture
categories such as fruits, vegetables, grain, meat, dairy produce, oil, beverages, and commercial crops,
as well as farm and plantation management. These works can be referred to and emulated in the
agriculture industry of tropical countries, especially in agriculture activities related to oil palm, rubber
and agro-food crops. However, challenges in terms of public acceptance, finance and technical support
should be overcome before achieving a complete integration of optics and photonics techniques in the
agriculture industry.

Thus, the key contribution of this study is the comprehensive analysis of different optics and
photonics systems in agricultural applications to provide a detail idea of the advanced techniques and
their future deployment in agriculture cultivation and harvesting. The review has proposed important
and selective suggestions for the further technological development of optics and photonics in future
agricultural applications:

• The incorporation of optical sensors into photonics detection techniques that serve as an early
warning for drinking water pollution.

• The characterization of canned food or bottled beverages in the NIR (>1100 nm) and MIR
wavebands for their optical “fingerprint” that correlates to the quality and food safety level of the
product, such as preservatives concentration.

• The characterization on hazardous residual materials in food using optical spectroscopy, Raman
spectroscopy and fluorescence.

• The implementation of an agricultural robot to perform better palm oil plantation management,
scheduled collection of field latex and weed removal.

• The spectral imaging provides early detection of disease-causing G. boninense in the oil palm.
• Spectroscopy provides moisture content inspection, protein and lipid content detection, as well as

improving the rubber vulcanizing process.
• The imaging technique detects external damage or bruises on organic fruits and vegetables.
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