Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Authors = Yangmao Wen ORCID = 0000-0001-8746-8615

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 14003 KB  
Article
Analysis of the Dihedral Corner Reflector’s RCS Features in Multi-Resource SAR
by Jie Liu, Tao Li, Sijie Ma, Yangmao Wen, Yanhao Xu and Guigen Nie
Appl. Sci. 2024, 14(12), 5054; https://doi.org/10.3390/app14125054 - 10 Jun 2024
Cited by 3 | Viewed by 3020
Abstract
Artificial corner reflectors are widely used in the vegetated landslide for time series InSAR monitoring due to their permanent scattering features. This paper investigated the RCS features of a novel dihedral CR under multi-resource SAR datasets. An RCS reduction model for the novel [...] Read more.
Artificial corner reflectors are widely used in the vegetated landslide for time series InSAR monitoring due to their permanent scattering features. This paper investigated the RCS features of a novel dihedral CR under multi-resource SAR datasets. An RCS reduction model for the novel dihedral corner reflector has been proposed to evaluate the energy loss caused by the deviation between the SAR incident angle and the CR’s axis. On the Huangtupo slope, Badong county, Hubei province, tens of dihedral CRs had been installed and the TSX–spotlight and Sentinel-TOPS data had been collected. Based on the observation results of CRs with more than ten deviation angles, the proposed reduction model was tested with preferable consistency under a real dataset, while 2 dBsm of systematic bias was verified in those datasets. The maximum incident angle deviation in the Sentinel data overlapping area is over 12°, which leads to a 2.4 dBsm RCS decrease for horizontally placed dihedral CRs estimated by the proposed model, which has also been testified by the observed results. The testing results from the Sentinel data show that in high, vegetation-covered mountain areas like the Huangtupo slope, the dihedral CRs with a 0.4 m slide length can be achieve 1 mm precision accuracy, while a side length of 0.2 m can achieve the same accuracy under TSX–spotlight data. Full article
(This article belongs to the Special Issue Latest Advances in Radar Remote Sensing Technologies)
Show Figures

Figure 1

21 pages, 30297 KB  
Article
A Bayesian Source Model for the 2022 Mw6.6 Luding Earthquake, Sichuan Province, China, Constrained by GPS and InSAR Observations
by Guangyu Xu, Xiwei Xu, Yaning Yi, Yangmao Wen, Longxiang Sun, Qixin Wang and Xiaoqiong Lei
Remote Sens. 2024, 16(1), 103; https://doi.org/10.3390/rs16010103 - 26 Dec 2023
Cited by 5 | Viewed by 2280
Abstract
Until the Mw 6.6 Luding earthquake ruptured the Moxi section of the Xianshuihe fault (XSHF) on 5 September 2022, the region had not experienced an Mw >6 earthquake since instrumental records began. We used Global Positioning System (GPS) and Sentinel-1 interferometric synthetic aperture [...] Read more.
Until the Mw 6.6 Luding earthquake ruptured the Moxi section of the Xianshuihe fault (XSHF) on 5 September 2022, the region had not experienced an Mw >6 earthquake since instrumental records began. We used Global Positioning System (GPS) and Sentinel-1 interferometric synthetic aperture radar (InSAR) observations to image the coseismic deformation and constrain the location and geometry of the seismogenic fault using a Bayesian method We then present a distributed slip model of the 2022 Mw6.6 Luding earthquake, a left-lateral strike-slip earthquake that occurred on the Moxi section of the Xianshuihe fault in the southwest Sichuan basin, China. Two tracks (T26 and T135) of the InSAR data captured a part of the coseismic surface deformation with the line-of-sight displacements range from ∼−0.16 m to ~0.14 m in the ascending track and from ~−0.12 m to ~0.10 m in the descending track. The inverted best-fitting fault model shows a pure sinistral strike-slip motion on a west-dipping fault plane with a strike of 164.3°. We adopt a variational Bayesian approach and account for the uncertainties in the fault geometry to retrieve the distributed slip model. The inverted result shows that the maximum slip of ~1.82 m occurred at a depth of 5.3 km, with the major slip concentrated within depths ranging from 0.9–11 km. The InSAR-determined moment is 1.3 × 1019 Nm, with a shear modulus of 30 GPa, equivalent to Mw 6.7. The published coseismic slip models of the 2022 Luding earthquake show apparent differences despite the use of similar geodetic or seismic observations. These variations underscore the uncertainty associated with routinely performed source inversions and their interpretations for the underlying fault model. Full article
Show Figures

Figure 1

15 pages, 23140 KB  
Article
Coseismic and Early Postseismic Deformation of the 2020 Mw 6.4 Petrinja Earthquake (Croatia) Revealed by InSAR
by Sen Zhu, Yangmao Wen, Xiaodong Gong and Jingbin Liu
Remote Sens. 2023, 15(10), 2617; https://doi.org/10.3390/rs15102617 - 18 May 2023
Cited by 4 | Viewed by 2679
Abstract
The largest earthquake (Mw 6.4) in northwestern Croatia ruptured the faults near the city of Petrinja on 29 December 2020, at 11:19 UTC. The epicenter was located ~3 km southwest of Petrinja, ~40 km southeast of Zagreb, the capital of the Republic of [...] Read more.
The largest earthquake (Mw 6.4) in northwestern Croatia ruptured the faults near the city of Petrinja on 29 December 2020, at 11:19 UTC. The epicenter was located ~3 km southwest of Petrinja, ~40 km southeast of Zagreb, the capital of the Republic of Croatia. Here we investigated the geometric and kinematic properties of the 2020 Mw 6.4 Petrinja earthquake using a joint inversion of ascending and descending interferograms from three tracks of Sentinel-1 Single-Look Complex (SLC) images. The coseismic and early postseismic surface displacements associated with the Petrinja earthquake were imaged using standard DInSAR and SBAS time-series InSAR methods, respectively. The distributed slip model was inverted based on the ground surface displacements with maximum slip patch in 5 km depth. The early postseismic deformation occurred on the northwestern extent of coseismic slip, and it cannot be well modeled by the coseismic model. We thus suggested that the postseismic deformation was caused by a combined effect of the postseismic afterslips and aftershocks occurring in this area. Based on the inverted slip model, we calculated the Coulomb stress change in the region, and found a good correlation between positive Coulomb failure stress ∆CFS and the distribution of aftershocks. Based on these results, we identified which faults are more active, and then better estimated the seismic hazards in the region. Full article
Show Figures

Figure 1

18 pages, 6858 KB  
Article
Coseismic Rupture Behaviors of the January and March 2022 MW > 5.5 Hala Lake Earthquakes, NE Tibet, Constrained by InSAR Observations
by Jiuyuan Yang, Caijun Xu and Yangmao Wen
Remote Sens. 2023, 15(4), 1124; https://doi.org/10.3390/rs15041124 - 18 Feb 2023
Cited by 1 | Viewed by 2263
Abstract
On 23 January and 25 March 2022, two MW > 5.5 Hala Lake earthquakes characterized by right-lateral strike-slip faulting occurred around the Elashan Fault in Northeastern Tibet, marking the two largest events since the 1927 MW 6.2 Hala Lake earthquake. Since [...] Read more.
On 23 January and 25 March 2022, two MW > 5.5 Hala Lake earthquakes characterized by right-lateral strike-slip faulting occurred around the Elashan Fault in Northeastern Tibet, marking the two largest events since the 1927 MW 6.2 Hala Lake earthquake. Since no surface rupture related to the two earthquakes has been reported, the seismogenic faults and coseismic rupture behaviors of the two events are still unknown. The occurrence of the two events provides a rare opportunity to gain insight into the seismogenic structure and rupture behavior of the less studied region, further helping us accurately evaluate the regional seismic hazard. Here, we first exploit Interferometric synthetic aperture radar (InSAR) data to obtain the coseismic deformation associated with the two earthquakes and then invert for the fault geometry and detailed coseismic slip of the two events. Coseismic modeling reveals that the January and March 2022 earthquakes ruptured two buried west-dipping moderate-angle and high-angle right-lateral strike-slip faults, respectively. Most of the slip of the January event occurred at depths from 1.7–7.6 km, while the majority of the slip associated with the March event occurred at depths from 2.5–10 km, which may have been restricted by the intersections between the January and March Hala Lake seismogenic faults. By a comprehensive analysis of the coseismic inversions, stress changes, and early postseismic signal, we suggest that the significant fault dip difference (~30°), highlighting a fault segmentation, stops the rupture propagation from one fault segment to another and that fluid migration may encourage the restart of the rupture of the later event, which requires further investigation. Moreover, Coulomb stress modeling shows stress loading on the eastern segment of the Daxueshan–Shule Fault and the northern segment of the Elashan fault, which we should pay more attention to. Full article
Show Figures

Graphical abstract

20 pages, 4584 KB  
Article
Real-Time Source Modeling of the 2022 Mw 6.6 Menyuan, China Earthquake with High-Rate GNSS Observations
by Zhicai Li, Jianfei Zang, Shijie Fan, Yangmao Wen, Caijun Xu, Fei Yang, Xiuying Peng, Lijiang Zhao and Xing Zhou
Remote Sens. 2022, 14(21), 5378; https://doi.org/10.3390/rs14215378 - 27 Oct 2022
Cited by 7 | Viewed by 2560
Abstract
On 7 January 2022, a Mw 6.6 earthquake struck Menyuan County in the Qinghai province of China and the earthquake caused severe damage to infrastructures. In this study, the performance of the high-rate global navigation satellite system (GNSS) on real-time source modeling of [...] Read more.
On 7 January 2022, a Mw 6.6 earthquake struck Menyuan County in the Qinghai province of China and the earthquake caused severe damage to infrastructures. In this study, the performance of the high-rate global navigation satellite system (GNSS) on real-time source modeling of the 2022 Mw 6.6 Menyuan earthquake was validated. We conducted the warning magnitude calculation, centroid moment tensor (CMT) inversion, and static fault slip distribution inversion using displacements collected from 14 1-Hz GNSS stations. Our results indicate that the warning magnitude derived from the peak ground displacement (PGD) first exceeds Mw 6.0 approximately 9 s after the earthquake and tends to be stable after about 45 s. The derived finally stable magnitude is Mw 6.5, which is near the USGS magnitude of Mw 6.6. Based on the inverted CMT and static fault slip distribution results, it can be determined that the 2022 Menyuan earthquake is a left-lateral strike-slip event after about 20 s of the earthquake. Although the fault slips, inverted with the 30-s smoothed coseismic offsets, are unstable after about 40 s, all the inverted slip models after that time present the obvious surface rupture and the most fault motions are concentrated between the depth of 0 km and 8 km. Compared with the results inverted with the 30-s smoothed coseismic offsets, the CMT and fault slips inverted with the 70-s smoothed coseismic offsets are more stable. The results obtained in this study indicate that the high-rate GNSS has the potential to be used for real-time source modeling for earthquakes with a magnitude less than 7; the stability of the inverted CMT and fault slips can be improved by using the coseismic offsets averaged by a relatively long-time sliding window. Full article
Show Figures

Figure 1

18 pages, 19715 KB  
Article
Normal Faulting in the 2020 Mw 6.2 Yutian Event: Implications for Ongoing E–W Thinning in Northern Tibet
by Ping He, Yangmao Wen, Kaihua Ding and Caijun Xu
Remote Sens. 2020, 12(18), 3012; https://doi.org/10.3390/rs12183012 - 16 Sep 2020
Cited by 22 | Viewed by 4336
Abstract
Extensional earthquakes in the Tibetan Plateau play an important role in the plateau’s orogenic evolution and cause heavy seismic hazard, yet their mechanisms remain poorly known, in particular in harsh northern Tibet. On 25 June 2020, a Mw 6.2 earthquake struck Yutian, Xinjiang, [...] Read more.
Extensional earthquakes in the Tibetan Plateau play an important role in the plateau’s orogenic evolution and cause heavy seismic hazard, yet their mechanisms remain poorly known, in particular in harsh northern Tibet. On 25 June 2020, a Mw 6.2 earthquake struck Yutian, Xinjiang, offering us a rare chance to gain insights into its mechanism and implications in the Tibetan extension. We used both descending and ascending Sentinel-1 images to generate coseismic deformation associated with this event, which indicates a typical extensional mechanism with a maximum subsidence displacement of 25 cm and minor uplift. The causative fault constrained with interferometric synthetic aperture radar (InSAR) data based on a finite fault model suggests that the fault plane has a strike of 186.4° and westward dip of 64.8°, and the main rupture is concentrated at a depth of 3.6–10.8 km with a peak slip of 0.85 m. Our source model indicates that the 2020 Yutian event ruptured an unknown high-angle blind normal fault with N–S striking. The total released geodetic moment yields 2.69 × 1018 N·m, equivalent to Mw 6.23. We used dense interseismic global positioning system (GPS) measurements to reveal an approximate 7 mm/yr extensional motion in the Yutian region, but it still does not seem large enough to support high local seismicity for normal events within 12 years, i.e., Mw 7.1 in 2008, Mw 6.2 in 2012, and this event in 2020. Combined with Coulomb stress change modeling, we speculate that the seismicity in Yutian is related to the lower lithospheric dynamics. Full article
Show Figures

Figure 1

17 pages, 5160 KB  
Article
3D Displacement Field of Wenchuan Earthquake Based on Iterative Least Squares for Virtual Observation and GPS/InSAR Observations
by Luyun Xiong, Caijun Xu, Yang Liu, Yangmao Wen and Jin Fang
Remote Sens. 2020, 12(6), 977; https://doi.org/10.3390/rs12060977 - 18 Mar 2020
Cited by 13 | Viewed by 4529
Abstract
The acquisition of a 3D displacement field can help to understand the crustal deformation pattern of seismogenic faults and deepen the understanding of the earthquake nucleation. The data for 3D displacement field extraction are usually from GPS/interferometric synthetic aperture radar (InSAR) observations, and [...] Read more.
The acquisition of a 3D displacement field can help to understand the crustal deformation pattern of seismogenic faults and deepen the understanding of the earthquake nucleation. The data for 3D displacement field extraction are usually from GPS/interferometric synthetic aperture radar (InSAR) observations, and the direct solution method is usually adopted. We proposed an iterative least squares for virtual observation (VOILS) based on the maximum a posteriori estimation criterion of Bayesian theorem to correct the errors caused by the GPS displacement interpolation process. Firstly, in the simulation examples, both uniform and non-uniform sampling schemes for GPS observation were used to extract 3D displacement. On the basis of the experimental results of the reverse fault, the normal fault with a strike-slip component, and the strike-slip fault with a reverse component, we found that the VOILS method is better than the direct solution method in both horizontal and vertical directions. When a uniform sampling scheme was adopted, the percentages of improvement for the reverse fault ranged from 3% to 9% and up to 70%, for the normal fault with a strike-slip component ranging from 4% to 8% and up to 68%, and for the strike-slip fault with a reverse component ranging from 1% to 8% and up to 22%. After this, the VOILS method was applied to extract the 3D displacement field of the 2008 Mw 7.9 Wenchuan earthquake. In the East–West (E) direction, the maximum displacement of the hanging wall was 1.69 m and 2.15 m in the footwall. As for the North–South (N) direction, the maximum displacement of the hanging wall was 0.82 m for the southwestern, 0.95 m for the northeastern, while that of the footwall was 0.77 m. In the vertical (U) direction, the maximum uplift was 1.19 m and 0.95 m for the subsidence, which was significantly different from the direct solution method. Finally, the derived vertical displacements were also compared with the ruptures from field investigations, indicating that the VOILS method can reduce the impact of the interpolated errors on parameter estimations to some extent. The simulation experiments and the case study of the 3D displacement field for the 2008 Wenchuan earthquake suggest that the VOILS method proposed in this study is feasible and effective, and the degree of improvement in the vertical direction is particularly significant. Full article
(This article belongs to the Special Issue Ground Deformation Patterns Detection by InSAR and GNSS Techniques)
Show Figures

Graphical abstract

18 pages, 14715 KB  
Article
Joint Inversion of GPS, Leveling, and InSAR Data for The 2013 Lushan (China) Earthquake and Its Seismic Hazard Implications
by Zhicai Li, Yangmao Wen, Peng Zhang, Yang Liu and Yong Zhang
Remote Sens. 2020, 12(4), 715; https://doi.org/10.3390/rs12040715 - 21 Feb 2020
Cited by 14 | Viewed by 4900
Abstract
On 20 April 2013, a moment magnitude (Mw) 6.6 earthquake occurred in the Lushan region of southwestern China and caused more than 190 fatalities. In this study, we use geodetic data from nearly 30 continuously operating global positioning system (GPS) stations, two periods [...] Read more.
On 20 April 2013, a moment magnitude (Mw) 6.6 earthquake occurred in the Lushan region of southwestern China and caused more than 190 fatalities. In this study, we use geodetic data from nearly 30 continuously operating global positioning system (GPS) stations, two periods of leveling data, and interferometric synthetic aperture radar (InSAR) observations to image the coseismic deformation of the Lushan earthquake. By using the Helmert variance component estimation method, a joint inversion is performed to estimate source parameters by using these GPS, leveling, and InSAR data sets. The results indicate that the 2013 Lushan earthquake occurred on a blind thrust fault. The event was dominated by thrust faulting with a minor left-lateral strike–slip component. The dip angle of the seismogenic fault was approximately 45.0°, and the fault strike was 208°, which is similar to the strike of the southern Longmenshan fault. Our finite fault model reveals that the peak slip of 0.71 m occurred at a depth of ~12 km, with substantial slip at depths of 6–20 km. The estimated magnitude was approximately Mw 6.6, consistent with seismological results. Furthermore, the calculated static Coulomb stress changes indicate that the 2013 Lushan earthquake may have been statically triggered by the 2008 Wenchuan earthquake. Full article
Show Figures

Graphical abstract

19 pages, 9393 KB  
Article
The 2017 Noneruptive Unrest at the Caldera of Cerro Azul Volcano (Galápagos Islands) Revealed by InSAR Observations and Geodetic Modelling
by Qian Guo, Caijun Xu, Yangmao Wen, Yang Liu and Guangyu Xu
Remote Sens. 2019, 11(17), 1992; https://doi.org/10.3390/rs11171992 - 23 Aug 2019
Cited by 15 | Viewed by 5623
Abstract
An unrest event occurred at the Cerro Azul volcano, Galápagos Islands, South America, in March 2017, leading to significant surface deformation on the southern Isabela Island, without eruption or surface rupture. We collected single-look complex synthetic aperture radar (SAR) images sensed by the [...] Read more.
An unrest event occurred at the Cerro Azul volcano, Galápagos Islands, South America, in March 2017, leading to significant surface deformation on the southern Isabela Island, without eruption or surface rupture. We collected single-look complex synthetic aperture radar (SAR) images sensed by the Sentinel-1A satellite, obtaining eight differential interferograms, of which four showed extensive surface displacement during the co-unrest period. Geodetic data indicated that the unrest continued from 18 March to 25 March, reaching a negative peak displacement of −32.9 cm in the caldera and a positive peak displacement of 41.8 cm on the south-east plain in the line-of-sight direction. A joint magma source deformation model, consisting of a Mogi source below the caldera and a sill source south-east of the caldera, was inverted by the Markov chain Monte Carlo method combined with the Metropolis–Hasting algorithm, acquiring the best fit with the four interferograms. The magma transport mechanism of the event was explained by magma overflowing from the compressive Mogi to the tensile sill source, resulting in the observed “∞”-shaped deformation fields. Additionally, we investigated previous events with eruption rifts and lava lakes in 1979, 1998, and 2008, and proposed a potential hazard of tectonic volcanic activity for further volcanic susceptibility research in the Cerro Azul area. Full article
(This article belongs to the Special Issue SAR for Natural Hazard )
Show Figures

Figure 1

20 pages, 7032 KB  
Article
Fault Slip Model of the 2018 Mw 6.6 Hokkaido Eastern Iburi, Japan, Earthquake Estimated from Satellite Radar and GPS Measurements
by Zelong Guo, Yangmao Wen, Guangyu Xu, Shuai Wang, Xiaohang Wang, Yang Liu and Caijun Xu
Remote Sens. 2019, 11(14), 1667; https://doi.org/10.3390/rs11141667 - 13 Jul 2019
Cited by 6 | Viewed by 6135
Abstract
In this study, Sentinel-1 and Advanced Land Observation Satellite-2 (ALOS-2) interferometric synthetic aperture radar (InSAR) and global positioning system (GPS) data were used to jointly determine the source parameters and fault slip distribution of the Mw 6.6 Hokkaido eastern Iburi, Japan, earthquake that [...] Read more.
In this study, Sentinel-1 and Advanced Land Observation Satellite-2 (ALOS-2) interferometric synthetic aperture radar (InSAR) and global positioning system (GPS) data were used to jointly determine the source parameters and fault slip distribution of the Mw 6.6 Hokkaido eastern Iburi, Japan, earthquake that occurred on 5 September 2018. The coseismic deformation map obtained from the ascending and descending Sentinel-1 and ALOS-2 InSAR data and GPS data is consistent with a thrust faulting event. A comparison between the InSAR-observed and GPS-projected line-of-sight (LOS) deformation suggests that descending Sentinel-1 track T046D, descending ALOS-2 track P018D, and ascending ALOS-2 track P112A and GPS data can be used to invert for the source parameters. The results of a nonlinear inversion show that the seismogenic fault is a blind NNW-trending (strike angle ~347.2°), east-dipping (dip angle ~79.6°) thrust fault. On the basis of the optimal fault geometry model, the fault slip distribution jointly inverted from the three datasets reveals that a significant slip area extends 30 km along the strike and 25 km in the downdip direction, and the peak slip magnitude can approach 0.53 m at a depth of 15.5 km. The estimated geodetic moment magnitude released by the distributed slip model is 6.16   × 10 18   N · m , equivalent to an event magnitude of Mw 6.50, which is slightly smaller than the estimates of focal mechanism solutions. According to the Coulomb stress change at the surrounding faults, more attention should be paid to potential earthquake disasters in this region in the near future. In consideration of the possibility of multi-fault rupture and complexity of regional geologic framework, the refined distributed slip and seismogenic mechanism of this deep reverse faulting should be investigated with multi-disciplinary (e.g., geodetic, seismic, and geological) data in further studies. Full article
(This article belongs to the Special Issue Applications of Sentinel Satellite for Geohazards Prevention)
Show Figures

Figure 1

15 pages, 4373 KB  
Article
The 2018 Mw 7.5 Palu Earthquake: A Supershear Rupture Event Constrained by InSAR and Broadband Regional Seismograms
by Jin Fang, Caijun Xu, Yangmao Wen, Shuai Wang, Guangyu Xu, Yingwen Zhao and Lei Yi
Remote Sens. 2019, 11(11), 1330; https://doi.org/10.3390/rs11111330 - 3 Jun 2019
Cited by 56 | Viewed by 8587
Abstract
The 28 September 2018 Mw 7.5 Palu earthquake occurred at a triple junction zone where the Philippine Sea, Australian, and Sunda plates are convergent. Here, we utilized Advanced Land Observing Satellite-2 (ALOS-2) interferometry synthetic aperture radar (InSAR) data together with broadband regional seismograms [...] Read more.
The 28 September 2018 Mw 7.5 Palu earthquake occurred at a triple junction zone where the Philippine Sea, Australian, and Sunda plates are convergent. Here, we utilized Advanced Land Observing Satellite-2 (ALOS-2) interferometry synthetic aperture radar (InSAR) data together with broadband regional seismograms to investigate the source geometry and rupture kinematics of this earthquake. Results showed that the 2018 Palu earthquake ruptured a fault plane with a relatively steep dip angle of ~85°. The preferred rupture model demonstrated that the earthquake was a supershear event from early on, with an average rupture speed of 4.1 km/s, which is different from the common supershear events that typically show an initial subshear rupture. The rupture expanded rapidly (~4.1 km/s) from the hypocenter and propagated bilaterally towards the north and south along the strike direction during the first 8 s, and then to the south. Four visible asperities were ruptured during the slip pulse propagation, which resulted in four significant deformation lobes in the coseismic interferogram. The maximum slip of 6.5 m was observed to the south of the city of Palu, and the total seismic moment released within 40 s was 2.64 × 1020 N·m, which was equivalent to Mw 7.55. Our results shed some light on the transtensional tectonism in Sulawesi, given that the 2018 Palu earthquake was dominated by left-lateral strike slip (slip maxima is 6.2 m) and that some significant normal faulting components (slip maxima is ~3 m) were resolved as well. Full article
(This article belongs to the Special Issue Applications of Sentinel Satellite for Geohazards Prevention)
Show Figures

Graphical abstract

18 pages, 2828 KB  
Article
Monitoring Groundwater Storage Changes in the Loess Plateau Using GRACE Satellite Gravity Data, Hydrological Models and Coal Mining Data
by Xiaowei Xie, Caijun Xu, Yangmao Wen and Wei Li
Remote Sens. 2018, 10(4), 605; https://doi.org/10.3390/rs10040605 - 13 Apr 2018
Cited by 74 | Viewed by 8233
Abstract
Monitoring the groundwater storage (GWS) changes is crucial to the rational utilization of groundwater and to ecological restoration in the Loess Plateau of China, which is one of the regions with the most extreme ecological environmental damage in the world. In this region, [...] Read more.
Monitoring the groundwater storage (GWS) changes is crucial to the rational utilization of groundwater and to ecological restoration in the Loess Plateau of China, which is one of the regions with the most extreme ecological environmental damage in the world. In this region, the mass loss caused by coal mining can reach the level of billions of tons per year. For this reason, in this work, in addition to Gravity Recovery and Climate Experiment (GRACE) satellite gravity data and hydrological models, coal mining data were also used to monitor GWS variation in the Loess Plateau during the period of 2005–2014. The GWS changes results from different GRACE solutions, that is, the spherical harmonics (SH) solutions, mascon solutions, and Slepian solutions (which are the Slepian localization of SH solutions), were compared with in situ GWS changes, obtained from 136 groundwater observation wells, and the aim was to acquire the most robust GWS changes. The results showed that the GWS changes from mascon solutions (mascon-GWS) match best with in situ GWS changes, showing the highest correlation coefficient, lowest root mean square error (RMSE) values and nearest annual trend. Therefore, the Mascon-GWS changes are used for the spatial-temporal analysis of GWS changes. Based on which, the groundwater depletion rate of the Loess Plateau was −0.65 ± 0.07 cm/year from 2005–2014, with a more severe consumption rate occurring in its eastern region, reaching about −1.5 cm/year, which is several times greater than those of the other regions. Furthermore, the precipitation and coal mining data were used for analyzing the causes of the groundwater depletion: the results showed that seasonal changes in groundwater storage are closely related to rainfall, but the groundwater consumption is mainly due to human activities; coal mining in particular plays a major role in the serious groundwater consumption in eastern region of the study area. Our results will help in groundwater resource management, ecological restoration, and policy planning for coal mining and economic development. Full article
(This article belongs to the Special Issue GRACE Facing the Challenge of Extreme Spatial and Temporal Scales)
Show Figures

Figure 1

21 pages, 28428 KB  
Article
Source Parameters of the 2016–2017 Central Italy Earthquake Sequence from the Sentinel-1, ALOS-2 and GPS Data
by Guangyu Xu, Caijun Xu, Yangmao Wen and Guoyan Jiang
Remote Sens. 2017, 9(11), 1182; https://doi.org/10.3390/rs9111182 - 17 Nov 2017
Cited by 51 | Viewed by 7858
Abstract
In this study, joint inversions of Synthetic Aperture Radar (SAR) and Global Position System (GPS) measurements are used to investigate the source parameters of four Mw > 5 events of the 2016–2017 Central Italy earthquake sequence. The results show that the four events [...] Read more.
In this study, joint inversions of Synthetic Aperture Radar (SAR) and Global Position System (GPS) measurements are used to investigate the source parameters of four Mw > 5 events of the 2016–2017 Central Italy earthquake sequence. The results show that the four events are all associated with a normal fault striking northwest–southeast and dipping southwest. The observations, in all cases, are consistent with slip on a rupture plane, with strike in the range of 157° to 164° and dip in the range of 39° to 44° that penetrates the uppermost crust to a depth of 0 to 8 km. The primary characteristics of these four events are that the 24 August 2016 Mw 6.2 Amatrice earthquake had pronounced heterogeneity of the slip distribution marked by two main slip patches, the 26 October 2016 Mw 6.1 Visso earthquake had a concentrated slip at 3–6 km, and the predominant slip of the 30 October 2016 Mw 6.6 Norcia earthquake occurred on the fault with a peak magnitude of 2.5 m at a depth of 0–6 km, suggesting that the rupture may have reached the surface, and the 18 January 2017 Mw 5.7 Campotosto earthquake had a large area of sliding at depth 3–9 km. The positive static stress changes on the fault planes of the latter three events demonstrate that the 24 August 2016 Amatrice earthquake may have triggered a cascading failure of earthquakes along the complex normal fault system in Central Italy. Full article
(This article belongs to the Special Issue Radar Interferometry for Geohazards)
Show Figures

Graphical abstract

15 pages, 9275 KB  
Article
Slip Model for the 25 November 2016 Mw 6.6 Aketao Earthquake, Western China, Revealed by Sentinel-1 and ALOS-2 Observations
by Shuai Wang, Caijun Xu, Yangmao Wen, Zhi Yin, Guoyan Jiang and Lihua Fang
Remote Sens. 2017, 9(4), 325; https://doi.org/10.3390/rs9040325 - 29 Mar 2017
Cited by 49 | Viewed by 7525
Abstract
On 25 November 2016 (UTC 14:24:30), an Mw 6.6 dextral strike-slip earthquake ruptured Aketao county in the northwestern portion of the Kongur Shan extensional system, western China. We extracted surface deformation maps and investigated the distribution of the coseismic slip of the 2016 [...] Read more.
On 25 November 2016 (UTC 14:24:30), an Mw 6.6 dextral strike-slip earthquake ruptured Aketao county in the northwestern portion of the Kongur Shan extensional system, western China. We extracted surface deformation maps and investigated the distribution of the coseismic slip of the 2016 Aketao earthquake by exploiting the Interferometric Synthetic Aperture Radar data imaged by the Sentinel-1 satellites of the European Space Agency and the ALOS-2 satellite of the Japanese Aerospace Exploration Agency. Assuming the crust of the earth is an elastic half-space homogeneous medium, the best fitting slip model suggests a dip angle of 78° for the seismogenic fault. The rupture of the 2016 Aketao earthquake may have consisted of two sub-events that occurred in rapid succession within a few seconds, resulting in two large discrete asperities with maximum slip of ~0.85 m, which were separated by a ~6 km-wide small slip gap. The maximum slip for the sub-event near the epicenter was mainly concentrated at a depth of ~10 km and that of the other at a depth of ~5 km. The estimated total seismic moment from the optimal slip model is 1.58 × 1019 N•m, corresponding to an event with a moment magnitude of 6.74. More than 65% of the aftershocks occurred in the areas of increased Coulomb failure stress, in which the stress was estimated to have been increased by at least 0.1 bar. Matching the potential barrier on the fault with the depth distribution of aftershocks implies that friction on the causative fault was heterogeneous, which may play a primary role in controlling the active behavior of the Muji fault. Full article
Show Figures

Graphical abstract

2 pages, 1350 KB  
Correction
Correction: Liu, Y. et al. Time-Dependent Afterslip of the 2009 Mw 6.3 Dachaidan Earthquake (China) and Viscosity beneath the Qaidam Basin Inferred from Postseismic Deformation Observations. Remote Sens. 2016, 8, 649
by Yang Liu, Caijun Xu, Zhenhong Li, Yangmao Wen, Jiajun Chen and Zhicai Li
Remote Sens. 2016, 8(9), 784; https://doi.org/10.3390/rs8090784 - 21 Sep 2016
Cited by 1 | Viewed by 4951
Abstract
After publication of the research paper [1] an error was recognized.[...] Full article
Show Figures

Figure 1

Back to TopTop