Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Authors = Tim K. Roberts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3313 KiB  
Article
Analysis of Cytoplasmic and Secreted Proteins of Staphylococcus aureus Revealed Adaptive Metabolic Homeostasis in Response to Changes in the Environmental Conditions Representative of the Human Wound Site
by Mousa M. Alreshidi, R. Hugh Dunstan, Margaret M. Macdonald, Vineet K. Singh and Tim K. Roberts
Microorganisms 2020, 8(7), 1082; https://doi.org/10.3390/microorganisms8071082 - 20 Jul 2020
Cited by 8 | Viewed by 3426
Abstract
The pathogenesis of Staphylococcus aureus is mainly attributed to its capability to adjust to changes in environmental conditions, including those present on human skin or within a wound site. This study investigated the changes in the cytoplasmic and secreted proteins in S. aureus [...] Read more.
The pathogenesis of Staphylococcus aureus is mainly attributed to its capability to adjust to changes in environmental conditions, including those present on human skin or within a wound site. This study investigated the changes in the cytoplasmic and secreted proteins in S. aureus that occurred in response to alterations in the environmental parameters that could be found in the human wound site. In total, sixty differentially regulated cytoplasmic proteins were detected using a label-free quantification approach, and these proteins were classified into ten molecular functions: protein biosynthesis, glycolysis, signal transduction, metabolism, cell cycle, transport, energy generation, cell anchorage, nucleotide biosynthesis and unknown. These changes represented characteristic protein profiles when evaluated by principal component analysis. The bacterium responded to elevated NaCl at pH 6 by decreasing the abundance of the majority of cytoplasmic proteins, while at pH 8 there was an increase in the levels of cytoplasmic proteins in comparison to the untreated cells. The analysis of the secreted proteins showed that there was a high degree of difference in both the intensity and the distribution of many individual protein bands in response to environmental challenges. From these results, it was deduced that specific metabolic homeostasis occurred under each combination of defined environmental conditions. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Graphical abstract

14 pages, 781 KiB  
Article
Does Milk Cause Constipation? A Crossover Dietary Trial
by Elesa T. Crowley, Lauren T. Williams, Tim K. Roberts, Richard H. Dunstan and Peter D. Jones
Nutrients 2013, 5(1), 253-266; https://doi.org/10.3390/nu5010253 - 22 Jan 2013
Cited by 30 | Viewed by 27251
Abstract
The aims of this study were to: (1) determine whether replacement of cow’s milk protein with soy resolves Chronic Functional Constipation (CFC); and (2) investigate the effects of cow’s milk β casein A1 and cow’s milk β casein A2 on CFC. Children diagnosed [...] Read more.
The aims of this study were to: (1) determine whether replacement of cow’s milk protein with soy resolves Chronic Functional Constipation (CFC); and (2) investigate the effects of cow’s milk β casein A1 and cow’s milk β casein A2 on CFC. Children diagnosed with CFC were recruited to one of two crossover trials: Trial 1 compared the effects of cow’s milk and soy milk; Trial 2 compared the effects of cow’s milk β casein A1 and cow’s milk β casein A2. Resolution of constipation was defined as greater than eight bowel motions during a two week intervention. Thirteen children (18 to 144 months) participated in Trial 1 (6 boys, 7 girls). Nine participants who completed the soy epoch all experienced resolution (p < 0.05). Thirty-nine children (21 to 144 months) participated in Trial 2 (25 boys, 14 girls). Resolution of constipation was highest during the washout epoch, 81%; followed by cow’s milk β casein A2, 79%; and cow’s milk β casein A1, 57%; however, the proportions did not differ statistically. The results of Trial 1 demonstrate an association between CFC and cow’s milk consumption but Trial 2 failed to show an effect from type of casein. Some other component in cow’s milk common to both A1 and A2 milk may be causing a problem in these susceptible children. Full article
(This article belongs to the Special Issue Infant Nutrition)
Show Figures

Figure 1

Back to TopTop