Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Authors = Manish Kumar Tiwari

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2754 KiB  
Article
μPPET: Investigating the Muon Puzzle with J-PET Detectors
by Alessio Porcelli, Kavya Valsan Eliyan, Gabriel Moskal, Nousaba Nasrin Protiti, Diana Laura Sirghi, Ermias Yitayew Beyene, Neha Chug, Catalina Curceanu, Eryk Czerwiński, Manish Das, Marek Gorgol, Jakub Hajduga, Sharareh Jalali, Bożena Jasińska, Krzysztof Kacprzak, Tevfik Kaplanoglu, Łukasz Kapłon, Kamila Kasperska, Aleksander Khreptak, Grzegorz Korcyl, Tomasz Kozik, Deepak Kumar, Karol Kubat, Edward Lisowski, Filip Lisowski, Justyna Mędrala-Sowa, Wiktor Mryka, Simbarashe Moyo, Szymon Niedźwiecki, Szymon Parzych, Piyush Pandey, Elena Perez del Rio, Bartłomiej Rachwał, Martin Rädler, Sushil Sharma, Magdalena Skurzok, Ewa Łucja Stȩpień, Tomasz Szumlak, Pooja Tanty, Keyvan Tayefi Ardebili, Satyam Tiwari and Paweł Moskaladd Show full author list remove Hide full author list
Universe 2025, 11(6), 180; https://doi.org/10.3390/universe11060180 - 2 Jun 2025
Viewed by 965
Abstract
The μPPET [mu(μ)on Probe with J-PET] project aims to investigate the “Muon Puzzle” seen in cosmic ray air showers. This puzzle arises from the observation of a significantly larger number of muons on Earth’s surface than that predicted by the [...] Read more.
The μPPET [mu(μ)on Probe with J-PET] project aims to investigate the “Muon Puzzle” seen in cosmic ray air showers. This puzzle arises from the observation of a significantly larger number of muons on Earth’s surface than that predicted by the current theoretical models. The investigated hypothesis is based on recently observed asymmetries in the parameters for the strong interaction cross-section and trajectory of an outgoing particle due to projectile–target polarization. The measurements require detailed information about muons at the ground level, including their track and charge distributions. To achieve this, the two PET scanners developed at the Jagiellonian University in Krakow (Poland), the J-PET detectors, will be employed, taking advantage of their well-known resolution and convenient location for detecting muons that reach long depths in the atmosphere. One station will be used as a muon tracker, while the second will reconstruct the core of the air shower. In parallel, the existing hadronic interaction models will be modified and fine-tuned based on the experimental results. In this work, we present the conceptualization and preliminary designs of μPPET. Full article
(This article belongs to the Special Issue Ultra-High-Energy Cosmic Rays)
Show Figures

Figure 1

25 pages, 1575 KiB  
Review
Molecular Chaperonin HSP60: Current Understanding and Future Prospects
by Manish Kumar Singh, Yoonhwa Shin, Sunhee Han, Joohun Ha, Pramod K. Tiwari, Sung Soo Kim and Insug Kang
Int. J. Mol. Sci. 2024, 25(10), 5483; https://doi.org/10.3390/ijms25105483 - 17 May 2024
Cited by 26 | Viewed by 5453
Abstract
Molecular chaperones are highly conserved across evolution and play a crucial role in preserving protein homeostasis. The 60 kDa heat shock protein (HSP60), also referred to as chaperonin 60 (Cpn60), resides within mitochondria and is involved in maintaining the organelle’s proteome integrity and [...] Read more.
Molecular chaperones are highly conserved across evolution and play a crucial role in preserving protein homeostasis. The 60 kDa heat shock protein (HSP60), also referred to as chaperonin 60 (Cpn60), resides within mitochondria and is involved in maintaining the organelle’s proteome integrity and homeostasis. The HSP60 family, encompassing Cpn60, plays diverse roles in cellular processes, including protein folding, cell signaling, and managing high-temperature stress. In prokaryotes, HSP60 is well understood as a GroEL/GroES complex, which forms a double-ring cavity and aids in protein folding. In eukaryotes, HSP60 is implicated in numerous biological functions, like facilitating the folding of native proteins and influencing disease and development processes. Notably, research highlights its critical involvement in sustaining oxidative stress and preserving mitochondrial integrity. HSP60 perturbation results in the loss of the mitochondria integrity and activates apoptosis. Currently, numerous clinical investigations are in progress to explore targeting HSP60 both in vivo and in vitro across various disease models. These studies aim to enhance our comprehension of disease mechanisms and potentially harness HSP60 as a therapeutic target for various conditions, including cancer, inflammatory disorders, and neurodegenerative diseases. This review delves into the diverse functions of HSP60 in regulating proteo-homeostasis, oxidative stress, ROS, apoptosis, and its implications in diseases like cancer and neurodegeneration. Full article
(This article belongs to the Special Issue Advances in Heat-Shock Response and Heat-Shock Proteins)
Show Figures

Figure 1

31 pages, 16179 KiB  
Article
Assessment and Mapping of Riverine Flood Susceptibility (RFS) in India through Coupled Multicriteria Decision Making Models and Geospatial Techniques
by Ravi Kumar, Manish Kumar, Akash Tiwari, Syed Irtiza Majid, Sourav Bhadwal, Netrananda Sahu and Ram Avtar
Water 2023, 15(22), 3918; https://doi.org/10.3390/w15223918 - 9 Nov 2023
Cited by 13 | Viewed by 10025
Abstract
Progressive environmental and climatic changes have significantly increased hydrometeorological threats all over the globe. Floods have gained global significance owing to their devastating impact and their capacity to cause economic and human loss. Accurate flood forecasting and the identification of high-risk areas are [...] Read more.
Progressive environmental and climatic changes have significantly increased hydrometeorological threats all over the globe. Floods have gained global significance owing to their devastating impact and their capacity to cause economic and human loss. Accurate flood forecasting and the identification of high-risk areas are essential for preventing flood impacts and implementing strategic measures to mitigate flood-related damages. In this study, an assessment of the susceptibility to riverine flooding in India was conducted utilizing Multicriteria Decision making (MCDM) and an extensive geospatial database was created through the integration of fourteen geomorphological, meteorological, hydroclimatic, and anthropogenic factors. The coupled methodology incorporates a Fuzzy Analytical Hierarchy Process (FAHP) model, which utilizes Triangular Fuzzy Numbers (TFN) to determine the Importance Weights (IWs) of various parameters and their subclasses based on the Saaty scale. Based on the determined IWs, this study identifies proximity to rivers, drainage density, and mean annual rainfall as the key factors that contribute significantly to the occurrence of riverine floods. Furthermore, as the Geographic Information System (GIS) was employed to create the Riverine Flood Susceptibility (RFS) map of India by overlaying the weighted factors, it was found that high, moderate, and low susceptibility zones across the country span of 15.33%, 26.30%, and 31.35% of the total area of the country, respectively. The regions with the highest susceptibility to flooding are primarily concentrated in the Brahmaputra, Ganga, and Indus River basins, which happen to encompass a significant portion of the country’s agricultural land (334,492 km2) potentially posing a risk to India’s food security. Approximately 28.13% of built-up area in India falls in the highly susceptible zones, including cities such as Bardhaman, Silchar, Kharagpur, Howrah, Kolkata, Patna, Munger, Bareilly, Allahabad, Varanasi, Lucknow, and Muzaffarpur, which are particularly susceptible to flooding. RFS is moderate in the Kutch-Saurashtra-Luni, Western Ghats, and Krishna basins. On the other hand, areas on the outskirts of the Ganga, Indus, and Brahmaputra basins, as well as the middle and outer portions of the peninsular basins, show a relatively low likelihood of riverine flooding. The RFS map created in this research, with an 80.2% validation accuracy assessed through AUROC analysis, will function as a valuable resource for Indian policymakers, urban planners, and emergency management agencies. It will aid them in prioritizing and executing efficient strategies to reduce flood risks effectively. Full article
Show Figures

Figure 1

32 pages, 5914 KiB  
Article
Integrated Spatial Analysis of Forest Fire Susceptibility in the Indian Western Himalayas (IWH) Using Remote Sensing and GIS-Based Fuzzy AHP Approach
by Pragya, Manish Kumar, Akash Tiwari, Syed Irtiza Majid, Sourav Bhadwal, Netrananda Sahu, Naresh Kumar Verma, Dinesh Kumar Tripathi and Ram Avtar
Remote Sens. 2023, 15(19), 4701; https://doi.org/10.3390/rs15194701 - 25 Sep 2023
Cited by 22 | Viewed by 7501
Abstract
Forest fires have significant impacts on economies, cultures, and ecologies worldwide. Developing predictive models for forest fire probability is crucial for preventing and managing these fires. Such models contribute to reducing losses and the frequency of forest fires by informing prevention efforts effectively. [...] Read more.
Forest fires have significant impacts on economies, cultures, and ecologies worldwide. Developing predictive models for forest fire probability is crucial for preventing and managing these fires. Such models contribute to reducing losses and the frequency of forest fires by informing prevention efforts effectively. The objective of this study was to assess and map the forest fire susceptibility (FFS) in the Indian Western Himalayas (IWH) region by employing a GIS-based fuzzy analytic hierarchy process (Fuzzy-AHP) technique, and to evaluate the FFS based on forest type and at district level in the states of Jammu and Kashmir, Himachal Pradesh, and Uttarakhand. Seventeen potential indicators were chosen for the vulnerability assessment of the IWH region to forest fires. These indicators encompassed physiographic factors, meteorological factors, and anthropogenic factors that significantly affect the susceptibility to fire in the region. The significant factors in FFS mapping included FCR, temperature, and distance to settlement. An FFS zone map of the IWH region was generated and classified into five categories of very low, low, medium, high, and very high FFS. The analysis of FFS based on the forest type revealed that tropical moist deciduous forests have a significant vulnerability to forest fire, with 86.85% of its total area having very high FFS. At the district level, FFS was found to be high in sixteen districts and very high in seventeen districts, constituting 25.7% and 22.6% of the area of the IWH region. Particularly, Lahul and Spiti had 63.9% of their total area designated as having very low FSS, making it the district least vulnerable to forest fires, while Udham Singh Nagar had a high vulnerability with approximately 86% of its area classified as having very high FFS. ROC-AUC analysis, which provided an appreciable accuracy of 79.9%, was used to assess the validity of the FFS map produced in the present study. Incorporating the FFS map into sustainable development planning will assist in devising a holistic strategy that harmonizes environmental conservation, community safety, and economic advancement. This approach can empower decision makers and relevant stakeholders to take more proactive and informed actions, promoting resilience and enhancing long-term well-being. Full article
Show Figures

Graphical abstract

19 pages, 2162 KiB  
Article
Utilization of Food Waste for the Development of Composite Bread
by Shuchi Upadhyay, Rajeev Tiwari, Sanjay Kumar, Shradhha Manish Gupta, Vinod Kumar, Indra Rautela, Deepika Kohli, Bhupendra S. Rawat and Ravinder Kaushik
Sustainability 2023, 15(17), 13079; https://doi.org/10.3390/su151713079 - 30 Aug 2023
Cited by 12 | Viewed by 3242
Abstract
The development of highly nutritious bakery products with optimum utilization of food waste is a major challenge for the food industry. The optimum utilization of food waste for the sustainable development goal of the country is important for the growth of the nation. [...] Read more.
The development of highly nutritious bakery products with optimum utilization of food waste is a major challenge for the food industry. The optimum utilization of food waste for the sustainable development goal of the country is important for the growth of the nation. The aim of the present work is to prepare value-added composite flour-mixed bread from waste fruit and vegetables. The composite flour was prepared in four formulations of peel and pomace with wheat flour (PPWF), as PPWF1, PPWF2, PPWF3, and PPWF4. Composite flour was blended with a mix of vegetable and fruit pomace powders and whole wheat flour. Indian gooseberry pomace powder, apple pomace powder, bottle gourd peel powder, and potato peel powder were used with whole wheat flour to make pomace and whole wheat flour compositions such as PPWF1, PPWF2, PPWF3, and PPWF4. Out of these four flours, PPWF3 contained a good amount of fiber 8.16%, crude protein 3.18%, total phenolic content 14.48%, moisture 9.5%, vitamin C 13.64 mg/100 g, and total phenolic compound 14.48 (mg/GAE/g), which are maximum and acceptable range values as compared to the other three composite flours and the control group flour. PPWF3 is used as a partial replacement ratio for wheat flour due to its high phenolic content, vitamin C content, and richness in fibers. This composite flour is used to make bread dough, and two samples, G1 and G2, are made, out of which G2 offers better nutritional, functional, and sensory evaluations in comparison with refined wheat bread, which is taken as a control group. Thus, such utilization of food waste in bread making can generate value from waste and improve the nutritional attributes of bread, which may improve an individual’s health. Full article
(This article belongs to the Collection Waste Utilization and Resource Recovery)
Show Figures

Figure 1

20 pages, 5110 KiB  
Article
QbD Design, Formulation, Optimization and Evaluation of Trans-Tympanic Reverse Gelatination Gel of Norfloxacin: Investigating Gene-Gene Interactions to Enhance Therapeutic Efficacy
by Amit Budhori, Abhishek Tiwari, Varsha Tiwari, Ajay Sharma, Manish Kumar, Girendra Gautam, Tarun Virmani, Girish Kumar, Abdulsalam Alhalmi, Omar Mohammed Noman, Sidgi Hasson and Ramzi A. Mothana
Gels 2023, 9(8), 657; https://doi.org/10.3390/gels9080657 - 15 Aug 2023
Cited by 9 | Viewed by 2522
Abstract
Traditional otic drug delivery methods lack controlled release capabilities, making reverse gelatination gels a promising alternative. Reverse gelatination gels are colloidal systems that transition from a sol to a gel phase at the target site, providing controlled drug release over an extended period. [...] Read more.
Traditional otic drug delivery methods lack controlled release capabilities, making reverse gelatination gels a promising alternative. Reverse gelatination gels are colloidal systems that transition from a sol to a gel phase at the target site, providing controlled drug release over an extended period. Thermosensitive norfloxacin reverse gelatination gels were developed using a Quality by Design (QbD)-based optimization approach. The formulations were evaluated for their in vitro release profile, rheological behavior, visual appearance, pH, gelling time, and sol–gel transition temperature. The results show that the gelation temperatures of the formulations ranged from 33 to 37 °C, with gelling durations between 35 and 90 s. The drug content in the formulations was uniform, with entrapment efficiency ranging from 55% to 95%. Among the formulations, F10 exhibited the most favorable properties and was selected for a stability study lasting 60 days. Ex-vivo release data demonstrate that the F10 formulation achieved 95.6percentage of drug release at 360 min. This study successfully developed thermosensitive norfloxacin reverse gelatination gels using a QbD-based optimization approach. The selected formulation, F10, exhibited desirable properties in terms of gelling temperature, drug content, and release profile. These gels hold potential for the controlled delivery of norfloxacin in the treatment of ear infections. Full article
(This article belongs to the Special Issue Gels in Medicine and Pharmacological Therapies (2nd Edition))
Show Figures

Graphical abstract

17 pages, 3885 KiB  
Article
Development and Validation of Liquid Chromatography-Tandem Mass Spectrometry Method for Simultaneous Determination of Tramadol and Its Phase I and II Metabolites in Human Urine
by Varsha Chauhan, Manu Sharma, Abhishek Tiwari, Varsha Tiwari, Manish Kumar, Tarun Virmani, Girish Kumar, Najla Altwaijry, Omkulthom Al kamaly, Asmaa Saleh and Abdulsalam Alhalmi
Separations 2023, 10(6), 365; https://doi.org/10.3390/separations10060365 - 19 Jun 2023
Cited by 4 | Viewed by 3030
Abstract
Tramadol (TD) has been prescribed frequently in many countries for more than 40 years, but there is a risk of its misuse and trafficking. As a result, drug analysis has numerous legal and socially relevant implications, making it an essential part of modern [...] Read more.
Tramadol (TD) has been prescribed frequently in many countries for more than 40 years, but there is a risk of its misuse and trafficking. As a result, drug analysis has numerous legal and socially relevant implications, making it an essential part of modern analytical chemistry. Thus, the method for the detection of TD and its phase I and phase II metabolites in human urine has been developed and validated using a rapid and efficient approach combining liquid chromatography-tandem mass spectrometry (LC-MS/MS) with electrospray ionization. The sample preparation was best performed using dispersive liquid–liquid microextraction. Analysis was performed using an HyPRITY Cl8 column, and isocratic elution with methanol: water (35:65) with 0.2% formic acid was used. TD and its metabolites were detected at 264.2 (TD/M0) with a base peak at 58.2, 250.3758 (M1), 250.3124 (M2), 236.3976 (M3), 222.5361 (M4), and 236.4475 (M5) m/z peaks. TD showed linearity between 0.1 and 160 ng/mL (R2 = 0.9981). The accuracy ranged from 95.56 to 100.21% for the three concentration levels, while the between- and within-day RSD ranged from 1.58 to 3.92%. The absolute TD recovery was 96.29, 96.91, and 94.31% for the concentrations of 5, 50, and 150 ng/mL, respectively. TD’s phase I metabolites, M1–5 along with nine phase II metabolites, such as sulfo- and glucurono-conjugated metabolites, oxidative TD derivatives, and sulfo-conjugated metabolites were also identified in the urine samples. The pharmacokinetics and metabolism data given provide information for the design of possible future research disorders, evaluating drug mechanism and neurotoxicity and for the effective application screening of TD. Full article
(This article belongs to the Special Issue Metabolite Identification via Liquid Chromatography-Mass Spectrometry)
Show Figures

Figure 1

15 pages, 2023 KiB  
Article
Correlation of Dengue and Meteorological Factors in Bangladesh: A Public Health Concern
by Md. Aminul Islam, Mohammad Nayeem Hasan, Ananda Tiwari, Md. Abdul Wahid Raju, Fateha Jannat, Sarawut Sangkham, Mahaad Issa Shammas, Prabhakar Sharma, Prosun Bhattacharya and Manish Kumar
Int. J. Environ. Res. Public Health 2023, 20(6), 5152; https://doi.org/10.3390/ijerph20065152 - 15 Mar 2023
Cited by 25 | Viewed by 6119
Abstract
Dengue virus (DENV) is an enveloped, single-stranded RNA virus, a member of the Flaviviridae family (which causes Dengue fever), and an arthropod-transmitted human viral infection. Bangladesh is well known for having some of Asia’s most vulnerable Dengue outbreaks, with climate change, its location, [...] Read more.
Dengue virus (DENV) is an enveloped, single-stranded RNA virus, a member of the Flaviviridae family (which causes Dengue fever), and an arthropod-transmitted human viral infection. Bangladesh is well known for having some of Asia’s most vulnerable Dengue outbreaks, with climate change, its location, and it’s dense population serving as the main contributors. For speculation about DENV outbreak characteristics, it is crucial to determine how meteorological factors correlate with the number of cases. This study used five time series models to observe the trend and forecast Dengue cases. Current data-based research has also applied four statistical models to test the relationship between Dengue-positive cases and meteorological parameters. Datasets were used from NASA for meteorological parameters, and daily DENV cases were obtained from the Directorate General of Health Service (DGHS) open-access websites. During the study period, the mean of DENV cases was 882.26 ± 3993.18, ranging between a minimum of 0 to a maximum of 52,636 daily confirmed cases. The Spearman’s rank correlation coefficient between climatic variables and Dengue incidence indicated that no substantial relationship exists between daily Dengue cases and wind speed, temperature, and surface pressure (Spearman’s rho; r = −0.007, p > 0.05; r = 0.085, p > 0.05; and r = −0.086, p > 0.05, respectively). Still, a significant relationship exists between daily Dengue cases and dew point, relative humidity, and rainfall (r = 0.158, p < 0.05; r = 0.175, p < 0.05; and r = 0.138, p < 0.05, respectively). Using the ARIMAX and GA models, the relationship for Dengue cases with wind speed is −666.50 [95% CI: −1711.86 to 378.86] and −953.05 [−2403.46 to 497.36], respectively. A similar negative relation between Dengue cases and wind speed was also determined in the GLM model (IRR = 0.98). Dew point and surface pressure also represented a negative correlation in both ARIMAX and GA models, respectively, but the GLM model showed a positive association. Additionally, temperature and relative humidity showed a positive correlation with Dengue cases (105.71 and 57.39, respectively, in the ARIMAX, 633.86, and 200.03 in the GA model). In contrast, both temperature and relative humidity showed negative relation with Dengue cases in the GLM model. In the Poisson regression model, windspeed has a substantial significant negative connection with Dengue cases in all seasons. Temperature and rainfall are significantly and positively associated with Dengue cases in all seasons. The association between meteorological factors and recent outbreak data is the first study where we are aware of the use of maximum time series models in Bangladesh. Taking comprehensive measures against DENV outbreaks in the future can be possible through these findings, which can help fellow researchers and policymakers. Full article
Show Figures

Figure 1

19 pages, 1223 KiB  
Review
Tracing COVID-19 Trails in Wastewater: A Systematic Review of SARS-CoV-2 Surveillance with Viral Variants
by Ananda Tiwari, Sangeet Adhikari, Shuxin Zhang, Tamunobelema B. Solomon, Anssi Lipponen, Md. Aminul Islam, Ocean Thakali, Sarawut Sangkham, Mohamed N. F. Shaheen, Guangming Jiang, Eiji Haramoto, Payal Mazumder, Bikash Malla, Manish Kumar, Tarja Pitkänen and Samendra P. Sherchan
Water 2023, 15(6), 1018; https://doi.org/10.3390/w15061018 - 7 Mar 2023
Cited by 31 | Viewed by 11922
Abstract
The emergence of new variants of SARS-CoV-2 associated with varying infectivity, pathogenicity, diagnosis, and effectiveness against treatments challenged the overall management of the COVID-19 pandemic. Wastewater surveillance (WWS), i.e., monitoring COVID-19 infections in communities through detecting viruses in wastewater, was applied to track [...] Read more.
The emergence of new variants of SARS-CoV-2 associated with varying infectivity, pathogenicity, diagnosis, and effectiveness against treatments challenged the overall management of the COVID-19 pandemic. Wastewater surveillance (WWS), i.e., monitoring COVID-19 infections in communities through detecting viruses in wastewater, was applied to track the emergence and spread of SARS-CoV-2 variants globally. However, there is a lack of comprehensive understanding of the use and effectiveness of WWS for new SARS-CoV-2 variants. Here we systematically reviewed published articles reporting monitoring of different SARS-CoV-2 variants in wastewater by following the PRISMA guidelines and provided the current state of the art of this study area. A total of 80 WWS studies were found that reported different monitoring variants of SARS-CoV-2 until November 2022. Most of these studies (66 out of the total 80, 82.5%) were conducted in Europe and North America, i.e., resource-rich countries. There was a high variation in WWS sampling strategy around the world, with composite sampling (50/66 total studies, 76%) as the primary method in resource-rich countries. In contrast, grab sampling was more common (8/14 total studies, 57%) in resource-limited countries. Among detection methods, the reverse transcriptase polymerase chain reaction (RT-PCR)-based sequencing method and quantitative RT-PCR method were commonly used for monitoring SARS-CoV-2 variants in wastewater. Among different variants, the B1.1.7 (Alpha) variant that appeared earlier in the pandemic was the most reported (48/80 total studies), followed by B.1.617.2 (Delta), B.1.351 (Beta), P.1 (Gamma), and others in wastewater. All variants reported in WWS studies followed the same pattern as the clinical reporting within the same timeline, demonstrating that WWS tracked all variants in a timely way when the variants emerged. Thus, wastewater monitoring may be utilized to identify the presence or absence of SARS-CoV-2 and follow the development and transmission of existing and emerging variants. Routine wastewater monitoring is a powerful infectious disease surveillance tool when implemented globally. Full article
(This article belongs to the Special Issue Pathogen Detection and Identification in Wastewater)
Show Figures

Figure 1

17 pages, 3317 KiB  
Article
Robust Control of SEDCM by Fuzzy-PSO
by Nagendra Singh, Akhilesh Kumar Sharma, Manish Tiwari, Michał Jasiński, Zbigniew Leonowicz, Stanislav Rusek and Radomir Gono
Electronics 2023, 12(2), 335; https://doi.org/10.3390/electronics12020335 - 9 Jan 2023
Cited by 11 | Viewed by 2432
Abstract
Industries have many rotational operations that are used for design, transport, lift, drilling, rolling, robotics, and many other applications. These rotating applications require a proper controller for accurate control of the operation. Separately excited DC motors (SEDCMs) are versatile and have various industrial [...] Read more.
Industries have many rotational operations that are used for design, transport, lift, drilling, rolling, robotics, and many other applications. These rotating applications require a proper controller for accurate control of the operation. Separately excited DC motors (SEDCMs) are versatile and have various industrial operations because of their specific speed control characteristics. So, for smooth and accurate operation of an SEDC motor, controllers should be used. PI and PID controllers are used in many cases, but they are ineffective for nonlinear load operation. A fuzzy controller is a heuristic controller and can provide automatic control of the operation. Its operation depends on the selection of the correct membership values. This work proposes a novel particle swarm optimization (PSO) technique that would provide the optimum value of the membership for fuzzy controllers for optimum control of the industrial processes. To obtain SEDC results, MATLAB simulation was performed, and the fuzzy controller with novel PSO was implemented. A fuzzy PSO controller used for motor speed control operation obtains a rise time of 0.00026 s, settling time of 0.000214 s, maximum overshoot of zero, and delay time of 0.016 s, which are the best values when compared to PID and PID-Fuzzy controllers. It is observed that the results obtained from the separately excited DC motor using a fuzzy PSO controller improve the dynamic behavior of the motor that so it smoothly tracks the required speed without any more overshoot or oscillation than the PID controller. Such dynamic, stable operation of the motor makes it perfect for industrial as well as household operations. Full article
(This article belongs to the Special Issue Feature Papers in Industrial Electronics)
Show Figures

Figure 1

16 pages, 2436 KiB  
Article
Imprints of Lockdown and Treatment Processes on the Wastewater Surveillance of SARS-CoV-2: A Curious Case of Fourteen Plants in Northern India
by Sudipti Arora, Aditi Nag, Ankur Rajpal, Vinay Kumar Tyagi, Satya Brat Tiwari, Jasmine Sethi, Devanshi Sutaria, Jayana Rajvanshi, Sonika Saxena, Sandeep Kumar Shrivastava, Vaibhav Srivastava, Akhilendra Bhushan Gupta, Absar Ahmed Kazmi and Manish Kumar
Water 2021, 13(16), 2265; https://doi.org/10.3390/w13162265 - 19 Aug 2021
Cited by 14 | Viewed by 4527
Abstract
The present study investigated the detection of severe acute respiratory syndrome–coronavirus 2 (SARS-CoV-2) genomes at each treatment stage of 14 aerobic wastewater treatment plants (WWTPs) serving the major municipalities in two states of Rajasthan and Uttarakhand in Northern India. The untreated, primary, secondary [...] Read more.
The present study investigated the detection of severe acute respiratory syndrome–coronavirus 2 (SARS-CoV-2) genomes at each treatment stage of 14 aerobic wastewater treatment plants (WWTPs) serving the major municipalities in two states of Rajasthan and Uttarakhand in Northern India. The untreated, primary, secondary and tertiary treated wastewater samples were collected over a time frame ranging from under-lockdown to post-lockdown conditions. The results showed that SARS-CoV-2 RNA was detected in 13 out of 40 wastewater samples in Jaipur district, Rajasthan and in 5 out of 14 wastewater samples in the Haridwar District, Uttarakhand with the E gene predominantly observed as compared to the N and RdRp target genes in later time-points of sampling. The Ct values of genes present in wastewater samples were correlated with the incidence of patient and community cases of COVID-19. This study further indicates that the viral RNA could be detected after the primary treatment but was not present in secondary or tertiary treated samples. This study implies that aerobic biological wastewater treatment systems such as moving bed biofilm reactor (MBBR) technology and sequencing batch reactor (SBR) are effective in virus removal from the wastewater. This work might present a new indication that there is little to no risk in relation to SARS-CoV-2 while reusing the treated wastewater for non-potable applications. In contrast, untreated wastewater might present a potential route of viral transmission through WWTPs to sanitation workers and the public. However, there is a need to investigate the survival and infection rates of SARS-CoV-2 in wastewater. Full article
(This article belongs to the Special Issue Pathogen Detection and Identification in Wastewater)
Show Figures

Figure 1

13 pages, 2940 KiB  
Article
Phe-140 Determines the Catalytic Efficiency of Arylacetonitrilase from Alcaligenes faecalis
by Jung-Soo Kim, Sanjay K. S. Patel, Manish K. Tiwari, Chunfen Lai, Anurag Kumar, Young Sin Kim, Vipin Chandra Kalia and Jung-Kul Lee
Int. J. Mol. Sci. 2020, 21(21), 7859; https://doi.org/10.3390/ijms21217859 - 23 Oct 2020
Cited by 11 | Viewed by 2228
Abstract
Arylacetonitrilase from Alcaligenes faecalis ATCC8750 (NitAF) hydrolyzes various arylacetonitriles to the corresponding carboxylic acids. A systematic strategy of amino acid residue screening through sequence alignment, followed by homology modeling and biochemical confirmation was employed to elucidate the determinant of NitAF catalytic efficiency. Substituting [...] Read more.
Arylacetonitrilase from Alcaligenes faecalis ATCC8750 (NitAF) hydrolyzes various arylacetonitriles to the corresponding carboxylic acids. A systematic strategy of amino acid residue screening through sequence alignment, followed by homology modeling and biochemical confirmation was employed to elucidate the determinant of NitAF catalytic efficiency. Substituting Phe-140 in NitAF (wild-type) to Trp did not change the catalytic efficiency toward phenylacetonitrile, an arylacetonitrile. The mutants with nonpolar aliphatic amino acids (Ala, Gly, Leu, or Val) at location 140 had lower activity, and those with charged amino acids (Asp, Glu, or Arg) exhibited nearly no activity for phenylacetonitrile. Molecular modeling showed that the hydrophobic benzene ring at position 140 supports a mechanism in which the thiol group of Cys-163 carries out a nucleophilic attack on a cyanocarbon of the substrate. Characterization of the role of the Phe-140 residue demonstrated the molecular determinant for the efficient formation of arylcarboxylic acids. Full article
(This article belongs to the Special Issue Microbial Systems and Synthetic Biology)
Show Figures

Figure 1

18 pages, 3782 KiB  
Article
Dual Market Facility Network Design under Bounded Rationality
by D. G. Mogale, Geet Lahoti, Shashi Bhushan Jha, Manish Shukla, Narasimha Kamath and Manoj Kumar Tiwari
Algorithms 2018, 11(4), 54; https://doi.org/10.3390/a11040054 - 20 Apr 2018
Cited by 15 | Viewed by 5558
Abstract
A number of markets, geographically separated, with different demand characteristics for different products that share a common component, are analyzed. This common component can either be manufactured locally in each of the markets or transported between the markets to fulfill the demand. However, [...] Read more.
A number of markets, geographically separated, with different demand characteristics for different products that share a common component, are analyzed. This common component can either be manufactured locally in each of the markets or transported between the markets to fulfill the demand. However, final assemblies are localized to the respective markets. The decision making challenge is whether to manufacture the common component centrally or locally. To formulate the underlying setting, a newsvendor modeling based approach is considered. The developed model is solved using Frank-Wolfe linearization technique along with Benders’ decomposition method. Further, the propensity of decision makers in each market to make suboptimal decisions leading to bounded rationality is considered. The results obtained for both the cases are compared. Full article
(This article belongs to the Special Issue Algorithms for Scheduling Problems)
Show Figures

Figure 1

46 pages, 1151 KiB  
Review
From Protein Engineering to Immobilization: Promising Strategies for the Upgrade of Industrial Enzymes
by Raushan Kumar Singh, Manish Kumar Tiwari, Ranjitha Singh and Jung-Kul Lee
Int. J. Mol. Sci. 2013, 14(1), 1232-1277; https://doi.org/10.3390/ijms14011232 - 10 Jan 2013
Cited by 421 | Viewed by 25434
Abstract
Enzymes found in nature have been exploited in industry due to their inherent catalytic properties in complex chemical processes under mild experimental and environmental conditions. The desired industrial goal is often difficult to achieve using the native form of the enzyme. Recent developments [...] Read more.
Enzymes found in nature have been exploited in industry due to their inherent catalytic properties in complex chemical processes under mild experimental and environmental conditions. The desired industrial goal is often difficult to achieve using the native form of the enzyme. Recent developments in protein engineering have revolutionized the development of commercially available enzymes into better industrial catalysts. Protein engineering aims at modifying the sequence of a protein, and hence its structure, to create enzymes with improved functional properties such as stability, specific activity, inhibition by reaction products, and selectivity towards non-natural substrates. Soluble enzymes are often immobilized onto solid insoluble supports to be reused in continuous processes and to facilitate the economical recovery of the enzyme after the reaction without any significant loss to its biochemical properties. Immobilization confers considerable stability towards temperature variations and organic solvents. Multipoint and multisubunit covalent attachments of enzymes on appropriately functionalized supports via linkers provide rigidity to the immobilized enzyme structure, ultimately resulting in improved enzyme stability. Protein engineering and immobilization techniques are sequential and compatible approaches for the improvement of enzyme properties. The present review highlights and summarizes various studies that have aimed to improve the biochemical properties of industrially significant enzymes. Full article
(This article belongs to the Special Issue Enzyme Optimization and Immobilization)
Show Figures

Graphical abstract

Back to TopTop