Study on Association between Spatial Distribution of Metal Mines and Disease Mortality: A Case Study in Suxian District, South China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. The Mining Industry Development
2.3. Calculation and Statistic Analysis
2.3.1. Remote Sensing Imagery
2.3.2. Retrospective Ecological Mortality
3. Result
3.1. Land Use and Mining Area Variation in the Researched Area during 30 Years
Land use type | 1985 | 1995 | 2000 | 2005 | 2012 |
---|---|---|---|---|---|
CuL | 215.3 | 228.1 | 214.4 | 201.3 | 177.6 |
FL | 840.1 | 816.9 | 798.4 | 767.5 | 744.2 |
GL | 134.1 | 133.9 | 125.5 | 122.8 | 118.1 |
WA | 38.4 | 38.6 | 37.6 | 37.3 | 35.9 |
CoL | 83.9 | 101.3 | 146.3 | 196.2 | 250.7 |
UL | 17.3 | 10.3 | 6.9 | 4.0 | 2.6 |
1985 | 1995 | 2000 | 2005 | 2012 | |
---|---|---|---|---|---|
Mining area | 7.09 | 10.44 | 13.66 | 18.87 | 21.53 |
Number | 14 | 17 | 22 | 20 | 18 |
3.2. Spatial Relationship between the Metal Mining Area and Mortality Rate of Residents
City | Suxian | Hongjiang | Chenzhou | Hunan | Beijing | Shanghai |
---|---|---|---|---|---|---|
Mortality | 706 | 613 | 701 | 670 | 441 | 507 |
Range | Mean | Median | Std. Dev | |
---|---|---|---|---|
Suxian | 342–1,048 | 654 | 695 | 1.656 |
Hongjiang | 350–881 | 588 | 616 | 1.056 |
Buffer | Total villages | High mortality villages | ||
---|---|---|---|---|
Number | Population | Number * | Rate (%) | |
1 km | 14 | 17,658 | 13 | 92.9 |
2 km | 19 | 23,805 | 18 | 94.7 |
3 km | 40 | 61,846 | 25 | 62.5 |
5 km | 71 | 103,720 | 40 | 56.3 |
7 km | 94 | 139,239 | 47 | 50.0 |
10 km | 116 | 175,500 | 57 | 49.1 |
15 km | 140 | 221,871 | 69 | 49.3 |
25 km | 170 | 272,264 | 73 | 42.9 |
4. Discussion
4.1. Development of Mining Area and Variation of Land Use
4.2. Disease Mortality Rate of Residents and Spatial Distribution of Mining Area
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- McMichael, A.J. Population, environment, disease, and survival: Past patterns, uncertain futures. Lancet 2002, 359, 1145–1148. [Google Scholar] [CrossRef]
- Jemal, A.; Center, M.M.; DeSantis, C.; Ward, E.M. Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiol. Biomark. Prev. 2010, 19, 1893–1907. [Google Scholar] [CrossRef]
- Thornton, I. Sources and pathways of arsenic in south-west England: Health implications. Arsen. Exposure Health 1994, 1994, 61–70. [Google Scholar]
- John, B.; Maria, S. Heavy metals in soil and vegetation at shallee mine, silvermines, Co. Tipparery. Proc. R. Ir. Acad. 1999, 99B, 37–42. [Google Scholar]
- Aslibekian, O.; Moles, R. Environmental risk assessment of metals contaminated soils at silver mines abandoned mine site, Co Tipperary, Ireland. Environ. Geochem. Health 2003, 25, 247–266. [Google Scholar] [CrossRef]
- Garcia-Sanchez, A.; Alonso-Rojo, P.; Santos-Frances, F. Distribution and mobility of arsenic in soils of a mining area (Western Spain). Sci. Total Environ. 2010, 408, 4194–4201. [Google Scholar] [CrossRef]
- Wu, F.; Fu, Z.; Liu, B.; Mo, C.; Chen, B.; Corns, W.; Liao, H. Health risk associated with dietary co-exposure to high levels of antimony and arsenic in the world’s largest antimony mine area. Sci. Total Environ. 2011, 409, 3344–3351. [Google Scholar] [CrossRef]
- Gonzalez-Montana, J.R.; Senis, E.; Gutierrez, A.; Prieto, F. Cadmium and lead in bovinemilk in the mining area of the Caudal River (Spain). Environ. Monit. Assess. 2012, 184, 4029–4034. [Google Scholar] [CrossRef]
- Huertas, J.I.; Huertas, M.E.; Izquierdo, S.; Gonzalez, E.D. Air quality impact assessment of multiple open pit coal mines in northern Colombia. J. Environ. Manag. 2012, 93, 121–129. [Google Scholar] [CrossRef]
- Hu, X.; Ding, Z. Lead/Cadmium contamination and lead isotopic ratios in vegetables grown in peri-urban and mining/smelting contaminated sites in Nanjing, China. Bull. Environ. Contam. Toxicol. 2009, 82, 80–84. [Google Scholar] [CrossRef]
- Bao, Q.-S.; Lu, C.-Y.; Song, H.; Wang, M.; Ling, W.; Chen, W.-Q.; Deng, X.-Q.; Hao, Y.-T.; Rao, S. Behavioural development of schoolaged children who live around a multi-metal sulphide mine in Guangdong Province, China: A cross-sectional study. BMC Public Health 2009, 9, 217. [Google Scholar] [CrossRef]
- Nordberg, G.F.; Jin, T.; Kong, Q.; Ye, T.; Cai, S.; Wang, Z.; Zhuang, F.; Wu, X. Biological monitoring of cadmium exposure and renal effects in a population group residing in a polluted area in China. Sci. Total Environ. 1997, 199, 111–114. [Google Scholar] [CrossRef]
- Watanabe, T.; Zhang, Z.-W.; Moon, C.-S.; Shimbo, S.; Nakatsuka, H.; Matsuda-Inoguchi, N.; Higashikawa, K.; Ikeda, M. Cadmium exposure of women in general populations in Japan during 1991–1997 compared with 1977–1981. Int. Arch. Occup. Environ. Health 2000, 73, 26–34. [Google Scholar] [CrossRef]
- Cheng, S. Heavy metal pollution in China: Origin, pattern and control. Environ. Sci. Pollut. Res. 2003, 10, 192–198. [Google Scholar] [CrossRef]
- Almeida-Filho, R.; Shimabukuro, Y.E. Detecting areas disturbed by gold mining activities through JERS-1 SAR images, Roraima State, Brazilian Amazon. Int. J. Remote Sens. 2000, 21, 3357–3362. [Google Scholar] [CrossRef]
- Lattofovic, R.; Fytas, K.; Chen, J.; Paraszczak, J. Assessing land cover change resulting from large surface mining development. Int. J. Appl. Earth Observ. Geoinf. 2005, 7, 29–48. [Google Scholar] [CrossRef]
- Marsh, S.H.; Cotton, C.; Ager, G.; Tragheim, D.G. Detecting Mine Pollution Using Hyperspectral Data in Temperate, Vegetated European Environments. In Proceedings of the Fourteenth International Conference on Applied Geologic Remote Sensing, Veridian ERIM International Conferences, Las Vegas, NV, USA, 6–8 November 2000.
- Kepner, W.G.; Watts, C.J.; Edmonds, C.M.; Maingl, J.K.; Marsh, S.E.; Luna, G. A landscape approach for detecting and evaluating change in a semi arid environment. Environ. Monit. Assess. 2000, 64, 179–195. [Google Scholar] [CrossRef]
- Chevrel, S.; Kuosmannen, V.; Belocky, R.; Marsh, S.; Tapani, T.; Mollat, H.; Quental, L.; Vosen, P.; Schumacher, V.; Kuronen, E.; et al. Hyperspectral Airborne Imagery for Mapping Mining Related Contaminated Areas in Various European Environments—First Results of MINEO Project. In In Proceedings of the 5th International Airborne Remote Sensing Conference, San Francisco, CA, USA, 17–20 September 2001.
- Swayze, G.A.; Smith, K.S.; Clark, R.N.; Sutley, S.J.; Pearson, R.M.; Vance, J.S.; Hageman, P.L.; Briggs, P.H.; Meier, A.L.; Sigleton, M.J.; et al. Using imaging spectroscopy to map acidic mine waste. Environ. Sci. Technol. 2000, 34, 47–54. [Google Scholar] [CrossRef]
- Mars, J.C.; Crowley, J.K. Mapping mine wastes and analyzing areas affected by selenium-rich water runoff south-east Idaho using AVIRIS imagery and digital elevation data. Remote Sens. Environ. 2003, 84, 422–436. [Google Scholar] [CrossRef]
- Yu, H.Y.; Cheng, G.; Ge, X.S.; Lu, X.P. Object oriented land cover classification using ALS and GeoEye imagery over mining area. Trans. Nonferrous Met. Soc. China 2011, 21, 733–737. [Google Scholar] [CrossRef]
- Hu, Z.L.; Li, H.Q.; Du, P.J. Case study on the extraction of land cover information from the SAR image of a coal mining area. Min. Sci. Technol. 2009, 19, 829–834. [Google Scholar]
- Hawkesworth, S.; Wagatsuma, Y.; Kippler, M.; Fulford, A.J.C.; Arifeen, S.E.; Persson, L.-A.; Moore, S.E.; Vahter, M. Early exposure to toxic metals has a limited effect on blood pressure or kidney function in later childhood, rural Bangladesh. Int. J. Epidemiol. 2013, 42, 176–185. [Google Scholar] [CrossRef]
- Pan, J.; Plant, J.A.; Voulvoulis, N.; Oates, C.J.; Ihlenfeld, C. Cadmium levels in Europe: Implications for human health. Environ. Geochem. Health 2010, 32, 1–12. [Google Scholar] [CrossRef]
- Wang, M.; Xu, Y.; Pan, S.; Zhang, J.; Zhong, A.; Song, H.; Ling, W. Long-term heavy metal pollution and mortality in a Chinese population: An ecologic study. Biol. Trace Elem. Res. 2011, 142, 362–379. [Google Scholar] [CrossRef]
- Wu, J.; Chen, G.; Liao, Y.; Song, X.; Pei, L.; Wang, J.; Zheng, X. Arsenic levels in the soil and risk of birth defects: A population-based case-control study using GIS technology. J. Environ. Health 2011, 74, 20–25. [Google Scholar]
- Turker, G.; Özsoy, G.; Özdermir, S.; Barutcu, B.; Gökalp, A.S. Effect of heavy metals in the meconium on preterm mortality: Preliminary study. Pediatr. Int. 2013, 55, 30–34. [Google Scholar] [CrossRef]
- Company profile. Available online: http://www.hnszy.com/szyweb/menu.go?method=style1 &&menuName=zzjg (accessed on 17 July 2013).
- Statistical communique. Available online: http://sx.cztj.gov.cn/Article/ShowClass.asp?ClassID=6 (accessed on 15 July 2013).
- World Health Organization (WHO), International Classification of Diseases, 10th Revision (ICD-10); WHO: Geneva, Switzerland, 1994.
- Neuberger, J.S.; Hu, S.C.; Drake, K.D.; Jim, R. Potential health impacts of heavy-metal exposure at the Tar Creek Superfund site, Ottawa County, Oklahoma. Environ. Geochem. Health 2009, 31, 47–59. [Google Scholar] [CrossRef]
- Fernández-Navarro, P.; García-Pérez, J.; Ramis, R.; Boldo, E.; López-Abente, G. Proximity to mining industry and cancer mortality. 2012, 435–436, 66–73. [Google Scholar]
- Dai, L. Bureau of Statistics of Hunan Province. In Hunan Statistical Yearbook; China Statistics Press: Beijing, China, 2011. [Google Scholar]
- Sheng, L. National Bureau of Statisticas of China. In China Statistical Yearbook; China Statistics Press: Beijing, China, 2011. [Google Scholar]
- Zong, Q.R.; Yang, R.; Zhou, X.; Tie, B. Characteristics of their fractionation in the area polluted by the heavy metals of lead-zinc ore tailing particulates. In J. Hunan Agric. Coll.; 1995; Volume 21, pp. 111–115. (in Chinese) [Google Scholar]
- Zeng, Q.R.; Zhou, X.H.; Tie, B.Q.; Yang, R.B. Pollution characteristic and treatments of heavy metals in a lead-zinc ore area. Rural Eco-Environ. 1997, 13, 12–15. (in Chinese). [Google Scholar]
- Zhai, L.; Liao, X.; Chen, T.; Yan, X.; Xie, H.; Wu, B.; Wang, L. Regional assessment of cadmium pollution in agricultural lands and the potential health risk related to intensive mining activities: A case study in Chenzhou City, China. J. Environ. Sci. 2008, 20, 696–703. [Google Scholar] [CrossRef]
- Liu, H.; Probst, A.; Liao, B. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). Sci. Total Environ. 2005, 339, 153–166. [Google Scholar] [CrossRef] [Green Version]
- Liao, X.-Y.; Chen, T.-B.; Xie, H.; Liu, Y.-R. Soil as contamination and its risk assessment in areas near the industrial districts of Chenzhou City, Southern China. Environ. Int. 2005, 31, 791–798. [Google Scholar] [CrossRef]
- Jung, M.C. Contamination by Cd, Cu, Pb, and Zn in mine wastes from abandoned metal mines classified as mineralization types in Korea. Environ. Geochem. Health 2008, 30, 205–217. [Google Scholar] [CrossRef]
- Obiri, S. Determination of heavy metals in water from boreholes in Dumasi in the Wassa west district of western region of Republic of Ghana. Environ. Monit. Assess. 2007, 130, 455–463. [Google Scholar] [CrossRef]
- Bosso, S.T.; Enzweiler, J. Bioaccessible lead in soils, slag, and mine wastes from an abandoned mining district in Brazil. Environ. Geochem. Health 2008, 30, 219–229. [Google Scholar] [CrossRef]
- Kachur, A.N.; Arzhanova, V.S.; Yelpatyevsky, P.V.; von Braun, M.C.; von Lindern, I.H. Environmental conditions in the Rudnaya River watershed—A compilation of Soviet and post-Soviet era sampling around a lead smelter in the Russian Far East. Sci. Total Environ. 2003, 303, 171–185. [Google Scholar] [CrossRef]
- Peplow, D.; Edmonds, R. Health risks associated with contamination of groundwater by abandoned mines near Twisp in Okanogan County, Washington, USA. Environ. Geochem. Health 2004, 26, 69–79. [Google Scholar] [CrossRef]
- Türkdoğan, M.K.; Kilicel, F.; Kara, K.; Tuncer, I.; Uygan, I. Heavy metals in soil, vegetables and fruits in the endemic upper gastrointestinal cancer region of Turkey. Environ. Toxicol. Pharmacol. 2002, 13, 175–179. [Google Scholar]
- Wong, O.; Whorton, M.D.; Foliart, D.E.; Lowengart, R. An ecologic study of skin cancer and environmental arsenic exposure. Int. Arch. Occup. Environ. Health 1992, 64, 234–241. [Google Scholar]
- Wang, M.; Song, H.; Chen, W.-Q.; Lu, C.; Hu, Q.; Ren, Z.; Yang, Y.; Xu, Y.; Zhong, A.; Ling, W. Cancer mortality in a Chinese population surrounding a multi-metal sulphide mine in Guangdong province: An ecologic study. In BMC Public Health; 2011; Volume 11, p. 319. [Google Scholar]
- Marsh, G.M.; Esmen, N.A.; Buchanich, J.M.; Youk, A.O. Mortality patterns among workers exposed to arsenic, cadmium, and other substances in a copper smelter. Am. J. Ind. Med. 2009, 52, 633–644. [Google Scholar] [CrossRef]
- García-Pérez, J.; Pollán, M.; Boldo, E.; Pérez-Gómez, B.; Aragonés, N.; Lope, V; Ramis, R.; Vidal, E.; López-Abente, G. Mortality due to lung, laryngeal and bladder cancer in towns lying in the vicinity of combustion installations. Sci. Total Environ. 2009, 407, 2593–2602. [Google Scholar] [CrossRef]
- García-Pérez, J.; López-Cima, M.F.; Boldo, E.; Fernández-Navarro, P.; Aragonés, N.; Pollán, M.; Pérez-Gómez, B.; López-Abente, G. Leukemia-Related mortality in towns lying in the vicinity of metal production and processing installations. Environ. Int. 2010, 36, 746–753. [Google Scholar] [CrossRef]
- Liao, X.Y.; Chen, T.B.; Xiao, X.Y.; Huang, Z.C.; An, Z.Z.; Mo, L.Y.; Li, W.X.; Chen, H.; Zheng, Y.M. Spatial distributions characteristics of arsenic in contaminated paddy soil. Geogr. Res. 2003, 22, 635–643. (in Chinese). [Google Scholar]
- Xie, H.; Liao, X.-Y.; Chen, T.-B.; Lin, J.Z. Arsenic in plants of farm land and its healthy risk: A case study in an As-contaminated site in Dengjiatang, Chenzhou City, Hunan Province. Geogr. Res. 2005, 24, 151–159. (in Chinese). [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Song, D.; Jiang, D.; Wang, Y.; Chen, W.; Huang, Y.; Zhuang, D. Study on Association between Spatial Distribution of Metal Mines and Disease Mortality: A Case Study in Suxian District, South China. Int. J. Environ. Res. Public Health 2013, 10, 5163-5177. https://doi.org/10.3390/ijerph10105163
Song D, Jiang D, Wang Y, Chen W, Huang Y, Zhuang D. Study on Association between Spatial Distribution of Metal Mines and Disease Mortality: A Case Study in Suxian District, South China. International Journal of Environmental Research and Public Health. 2013; 10(10):5163-5177. https://doi.org/10.3390/ijerph10105163
Chicago/Turabian StyleSong, Daping, Dong Jiang, Yong Wang, Wei Chen, Yaohuan Huang, and Dafang Zhuang. 2013. "Study on Association between Spatial Distribution of Metal Mines and Disease Mortality: A Case Study in Suxian District, South China" International Journal of Environmental Research and Public Health 10, no. 10: 5163-5177. https://doi.org/10.3390/ijerph10105163
APA StyleSong, D., Jiang, D., Wang, Y., Chen, W., Huang, Y., & Zhuang, D. (2013). Study on Association between Spatial Distribution of Metal Mines and Disease Mortality: A Case Study in Suxian District, South China. International Journal of Environmental Research and Public Health, 10(10), 5163-5177. https://doi.org/10.3390/ijerph10105163