- Article
Optimization Analysis of the Dynamic Performance of Permanent Magnet Levitation Vehicles Based on Magnetic Wheelset
- Pengfei Zhan,
- Hongping Luo and
- Chuanjin Liao
- + 2 authors
The permanent magnet levitation (PML) transportation system utilizes Halbach arrays to achieve zero-power levitation. However, the system’s lateral negative stiffness characteristic leads to a significant increase in lateral force during operation, exacerbating lateral vibration and compromising system stability. Taking the Xingguo Line PML system as the research object, this study systematically analyzes the nonlinear characteristics of the levitation force and lateral force in a single-point levitation system through theoretical modeling, finite element simulation, and experimental validation. The concept of a ‘Magnetic Wheelset’ coupling the left and right levitation points of the bogie is proposed. The influence of five mounting forms—Aligned, X-type, Different center distance, Double V-type, and Single V-type—on the levitation performance of the Magnetic Wheelset is investigated. The coefficient of variation (CV) method is employed to evaluate force stability, and an optimal case is subsequently screened out using a dual-objective constraint approach that incorporates mean levitation force and lateral force thresholds. Results indicate that the X-type mounting at 25° is the optimal case. At 40 km/h, compared to the baseline Aligned configuration, the root mean square (RMS) values of the bogie’s vertical and lateral vibration accelerations are reduced by 14.7% and 23.8%, respectively. The vehicle’s vertical and lateral ride comfort indices decrease by 0.33 and 0.27, respectively, and the track beam’s vertical and lateral vibration accelerations are reduced by 19.4% and 13.3%. The methodology presented in this study provides a valuable reference for vibration suppression in PML systems.
15 November 2025





