- Article
Self-Regulating Fuzzy-LQR Control of an Inverted Pendulum System via Adaptive Hyperbolic Error Modulation
- Omer Saleem,
- Jamshed Iqbal and
- Soltan Alharbi
This study introduces an innovative self-regulating intelligent optimal balancing control framework for inverted pendulum-type mechatronic platforms, designed to enhance reference tracking accuracy and improve disturbance rejection capability. The control procedure is synthesized by synergistically integrating a baseline Linear Quadratic Regulator (LQR) with a fuzzy controller via a customized linear decomposition function (LDF). The LDF dissociates and transforms the LQR control law into compounded state tracking error and tracking error derivative variables that are eventually used to drive the fuzzy controller. The principal contribution of this study lies in the adaptive modulation of these compounded variables using reconfigurable tangent hyperbolic functions driven by the cubic power of the error signals. This nonlinear preprocessing of the input variables selectively amplifies large errors while attenuating small ones, thereby improving robustness and reducing oscillations. Moreover, a model-free online self-tuning law dynamically adjusts the variation rates of the hyperbolic functions through dissipative and anti-dissipative terms of the state errors, enabling autonomous reconfiguration of the nonlinear preprocessing layer. This dual-level adaptation enhances the flexibility and resilience of the controller under perturbations. The robustness of the designed controller is substantiated via tailored experimental trials conducted on the Quanser rotary pendulum platform. Comparative results show that the prescribed scheme reduces pendulum angle variance by 41.8%, arm position variance by 34.6%, and average control energy by 28.3% relative to the baseline LQR, while outperforming conventional fuzzy-LQR by similar margins. These results show that the prescribed controller significantly enhances disturbance rejection and tracking accuracy, thereby offering a numerically superior control of inverted pendulum systems.
12 October 2025