Fungal Endophytes: An Alternative Biocontrol Agent against Phytopathogenic Fungi
Abstract
:1. Introduction
1.1. Phytopathogenic Fungi and Their Significance
1.2. Endophytic Fungi and Their Benefits
2. Urgent Need for Biocontrol Agents
3. Endophytic Fungi as Successful Biocontrol Agents
3.1. Emergence of Endophytic Fungi as Biocontrol Agents
3.2. In Vitro Assay for Recognition of the Antagonistic Ability of Endophytic Fungi
3.3. Application of Endophytic Fungi in Real Fields
3.4. Control Mechanism of Phytopathogenic Fungi by Endophytic Fungi
3.4.1. Mycoparasitism
3.4.2. Competition for Nutrition and Ecological Niches
3.4.3. Antibiosis
3.4.4. Induction of Plant Defense System
4. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sadigov, R. Rapid Growth of the World Population and Its Socioeconomic Results. Sci. World J. 2022, 2022, 8110229. [Google Scholar] [CrossRef]
- Bongaarts, J. Human Population Growth and the Demographic Transition. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009, 364, 2985–2990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paz, D.B.; Henderson, K.; Loreau, M. Agricultural Land Use and the Sustainability of Social-Ecological Systems. Ecol. Modell. 2020, 437, 109312. [Google Scholar] [CrossRef]
- New Standards to Curb the Global Spread of Plant Pests and Diseases. FAO. Available online: https://www.fao.org/news/story/en/item/1187738/icode/ (accessed on 19 March 2023).
- Ristaino, J.B.; Anderson, P.K.; Bebber, D.P.; Brauman, K.A.; Cunniffe, N.J.; Fedoroff, N.V.; Finegold, C.; Garrett, K.A.; Gilligan, C.A.; Jones, C.M.; et al. The Persistent Threat of Emerging Plant Disease Pandemics to Global Food Security. Proc. Natl. Acad. Sci. USA 2021, 118, e2022239118. [Google Scholar] [CrossRef]
- Peng, Y.; Li, S.J.; Yan, J.; Tang, Y.; Cheng, J.P.; Gao, A.J.; Yao, X.; Ruan, J.J.; Xu, B.L. Research Progress on Phytopathogenic Fungi and Their Role as Biocontrol Agents. Front. Microbiol. 2021, 12, 670135. [Google Scholar] [CrossRef] [PubMed]
- Gullino, M.L. Coffee Rust in Ceylon: Why English People Drink Tea. In Spores; Springer: Cham, Switzerland, 2021; pp. 29–32. ISBN 9783030699949. [Google Scholar]
- Padmanabhan, S.Y. The Great Bengal Famine. Annu. Rev. Phytopathol. 1973, 11, 11–24. [Google Scholar] [CrossRef]
- Tatum, L.A. The Southern Corn Leaf Blight Epidemic: A New Race of the Fungus Helminthosporium maydis Threatens Domestic Prices and Corn Reserves for Export. Science 1971, 171, 1113–1116. [Google Scholar] [CrossRef]
- Dean, R.; Van Kan, J.A.L.; Pretorius, Z.A.; Hammond-Kosack, K.E.; Di Pietro, A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J.; et al. The Top 10 Fungal Pathogens in Molecular Plant Pathology. Mol. Plant Pathol. 2012, 13, 414–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doehlemann, G.; Ökmen, B.; Zhu, W.; Sharon, A. Plant Pathogenic Fungi. Microbiol. Spectr. 2017, 5, 1–23. [Google Scholar] [CrossRef]
- Coque, J.J.R.; Álvarez-Pérez, J.M.; Cobos, R.; González-García, S.; Ibáñez, A.M.; Diez Galán, A.; Calvo-Peña, C. Advances in the Control of Phytopathogenic Fungi That Infect Crops through Their Root System. Adv. Appl. Microbiol. 2020, 111, 123–170. [Google Scholar] [CrossRef]
- Ponce de León, I.; Montesano, M. Activation of Defense Mechanisms against Pathogens in Mosses and Flowering Plants. Int. J. Mol. Sci. 2013, 14, 3178–3200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westrick, N.M.; Smith, D.L.; Kabbage, M. Disarming the Host: Detoxification of Plant Defense Compounds during Fungal Necrotrophy. Front. Plant Sci. 2021, 12, 651716. [Google Scholar] [CrossRef]
- Brader, G.; Compant, S.; Vescio, K.; Mitter, B.; Trognitz, F.; Ma, L.-J.; Sessitsch, A. Ecology and Genomic Insights into Plant-Pathogenic and Plant-Nonpathogenic Endophytes. Annu. Rev. Phytopathol. 2017, 55, 61–83. [Google Scholar] [CrossRef]
- Khare, E.; Mishra, J.; Arora, N.K. Multifaceted Interactions between Endophytes and Plant: Developments and Prospects. Front. Microbiol. 2018, 9, 2732. [Google Scholar] [CrossRef]
- Lo Presti, L.; Lanver, D.; Schweizer, G.; Tanaka, S.; Liang, L.; Tollot, M.; Zuccaro, A.; Reissmann, S.; Kahmann, R. Fungal Effectors and Plant Susceptibility. Annu. Rev. Plant Biol. 2015, 66, 513–545. [Google Scholar] [CrossRef] [PubMed]
- Collinge, D.B.; Jensen, B.; Jørgensen, H.J. Fungal Endophytes in Plants and Their Relationship to Plant Disease. Curr. Opin. Microbiol. 2022, 69, 102177. [Google Scholar] [CrossRef]
- Gouda, S.; Das, G.; Sen, S.K.; Shin, H.-S.; Patra, J.K. Endophytes: A Treasure House of Bioactive Compounds of Medicinal Importance. Front. Microbiol. 2016, 7, 1538. [Google Scholar] [CrossRef] [Green Version]
- Krings, M.; Taylor, T.N.; Hass, H.; Kerp, H.; Dotzler, N.; Hermsen, E.J. Fungal Endophytes in a 400-Million-Yr-Old Land Plant: Infection Pathways, Spatial Distribution, and Host Responses. New Phytol. 2007, 174, 648–657. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.A.; Tank, D.C.; Boulanger, L.-A.; Bascom-Slack, C.A.; Eisenman, K.; Kingery, D.; Babbs, B.; Fenn, K.; Greene, J.S.; Hann, B.D.; et al. Bioactive Endophytes Warrant Intensified Exploration and Conservation. PLoS ONE 2008, 3, e3052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hodgson, S.; de Cates, C.; Hodgson, J.; Morley, N.J.; Sutton, B.C.; Gange, A.C. Vertical Transmission of Fungal Endophytes Is Widespread in Forbs. Ecol. Evol. 2014, 4, 1199–1208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alam, B.; Lǐ, J.; Gě, Q.; Khan, M.A.; Gōng, J.; Mehmood, S.; Yuán, Y.; Gǒng, W. Endophytic Fungi: From Symbiosis to Secondary Metabolite Communications or Vice Versa? Front. Plant Sci. 2021, 12, 791033. [Google Scholar] [CrossRef]
- Rashmi, M.; Kushveer, J.S.; Sarma, V.V. A Worldwide List of Endophytic Fungi with Notes on Ecology and Diversity. Mycosphere 2019, 10, 798–1079. [Google Scholar] [CrossRef]
- Baron, N.C.; Rigobelo, E.C. Endophytic Fungi: A Tool for Plant Growth Promotion and Sustainable Agriculture. Mycology 2022, 13, 39–55. [Google Scholar] [CrossRef]
- Digra, S.; Nonzom, S. An Insight into Endophytic Antimicrobial Compounds: An Updated Analysis. Plant Biotechnol. Rep. 2023. [Google Scholar] [CrossRef]
- Shahzad, R.; Khan, A.L.; Bilal, S.; Asaf, S.; Lee, I.-J. What Is There in Seeds? Vertically Transmitted Endophytic Resources for Sustainable Improvement in Plant Growth. Front. Plant Sci. 2018, 9, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stierle, A.; Strobel, G.; Stierle, D. Taxol and Taxane Production by Taxomyces andreanae, an Endophytic Fungus of Pacific Yew. Science 1993, 260, 214–216. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, T.; Ming, Q.; Wu, L.; Rahman, K.; Qin, L. Alkaloids Produced by Endophytic Fungi: A Review. Nat. Prod. Commun. 2012, 7, 963–968. [Google Scholar] [CrossRef] [Green Version]
- Adeleke, B.S.; Babalola, O.O. Pharmacological Potential of Fungal Endophytes Associated with Medicinal Plants: A Review. J. Fungi 2021, 7, 147. [Google Scholar] [CrossRef]
- Tumangger, B.S.; Nadilla, F.; Baiduri, N.; Fitriani; Mardina, V. In Vitro Screening of Endophytic Fungi Associated with Mangroveas Biofertilizer on the Growth of Black Rice (Oryza sativa L. “Cempo Ireng”). IOP Conf. Ser. Mater. Sci. Eng. 2018, 420, 012080. [Google Scholar] [CrossRef]
- Bamisile, B.S.; Dash, C.K.; Akutse, K.S.; Keppanan, R.; Wang, L. Fungal Endophytes: Beyond Herbivore Management. Front. Microbiol. 2018, 9, 544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhadra, F.; Gupta, A.; Vasundhara, M.; Reddy, M.S. Endophytic Fungi: A Potential Source of Industrial Enzyme Producers. 3 Biotech 2022, 12, 86. [Google Scholar] [CrossRef]
- Aktar, M.W.; Sengupta, D.; Chowdhury, A. Impact of Pesticides Use in Agriculture: Their Benefits and Hazards. Interdiscip. Toxicol. 2009, 2, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Tudi, M.; Daniel Ruan, H.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C.; Phung, D.T. Agriculture Development, Pesticide Application and Its Impact on the Environment. Int. J. Environ. Res. Public Health 2021, 18, 1112. [Google Scholar] [CrossRef]
- Priyashantha, A.K.H.; Attanayake, R.N. Can Anaerobic Soil Disinfestation (ASD) be a Game Changer in Tropical Agriculture? Pathogens 2021, 10, 133. [Google Scholar] [CrossRef] [PubMed]
- Kalyabina, V.P.; Esimbekova, E.N.; Kopylova, K.V.; Kratasyuk, V.A. Pesticides: Formulants, Distribution Pathways and Effects on Human Health-A Review. Toxicol. Rep. 2021, 8, 1179–1192. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Zheng, X.; Shangguan, S.; Zhao, L.; Fang, X.; Huang, Y.; Hermanowicz, S.W. Public Perceptions and Willingness-to-Pay for Nanopesticides. Nanomaterials 2022, 12, 1292. [Google Scholar] [CrossRef] [PubMed]
- Garcia, S.D.; Strieder, D.M. Perceptions about Exposure to Pesticides among Rural School Students: Identified Controversies. Rev. Bras. Enferm. 2023, 76, e20220101. [Google Scholar] [CrossRef]
- Ashkani, S.; Rafii, M.Y.; Shabanimofrad, M.; Miah, G.; Sahebi, M.; Azizi, P.; Tanweer, F.A.; Akhtar, M.S.; Nasehi, A. Molecular Breeding Strategy and Challenges towards Improvement of Blast Disease Resistance in Rice Crop. Front. Plant Sci. 2015, 6, 886. [Google Scholar] [CrossRef] [Green Version]
- Carolan, K.; Helps, J.; van den Berg, F.; Bain, R.; Paveley, N.; van den Bosch, F. Extending the Durability of Cultivar Resistance by Limiting Epidemic Growth Rates. Proc. Biol. Sci. 2017, 284, 20170828. [Google Scholar] [CrossRef]
- Fontana, D.C.; de Paula, S.; Torres, A.G.; de Souza, V.H.M.; Pascholati, S.F.; Schmidt, D.; Dourado Neto, D. Endophytic Fungi: Biological Control and Induced Resistance to Phytopathogens and Abiotic Stresses. Pathogens 2021, 10, 570. [Google Scholar] [CrossRef]
- Hernandez-Tenorio, F.; Miranda, A.M.; Rodríguez, C.A.; Giraldo-Estrada, C.; Sáez, A.A. Potential Strategies in the Biopesticide Formulations: A Bibliometric Analysis. Agronomy 2022, 12, 2665. [Google Scholar] [CrossRef]
- Van Dam, P.; de Sain, M.; ter Horst, A.; van der Gragt, M.; Rep, M. Use of Comparative Genomics-Based Markers for Discrimination of Host Specificity in Fusarium oxysporum. Appl. Environ. Microbiol. 2018, 84, e01868-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Lamo, F.J.; Takken, F.L.W. Biocontrol by Fusarium oxysporum Using Endophyte-Mediated Resistance. Front. Plant Sci. 2020, 11, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lahlali, R.; Ezrari, S.; Radouane, N.; Kenfaoui, J.; Esmaeel, Q.; El Hamss, H.; Belabess, Z.; Barka, E.A. Biological Control of Plant Pathogens: A Global Perspective. Microorganisms 2022, 10, 596. [Google Scholar] [CrossRef] [PubMed]
- Bale, J.S.; van Lenteren, J.C.; Bigler, F. Biological Control and Sustainable Food Production. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008, 363, 761–776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandit, M.A.; Kumar, J.; Gulati, S.; Bhandari, N.; Mehta, P.; Katyal, R.; Rawat, C.D.; Mishra, V.; Kaur, J. Major Biological Control Strategies for Plant Pathogens. Pathogens 2022, 11, 273. [Google Scholar] [CrossRef]
- Niu, B.; Wang, W.; Yuan, Z.; Sederoff, R.R.; Sederoff, H.; Chiang, V.L.; Borriss, R. Microbial Interactions within Multiple-Strain Biological Control Agents Impact Soil-Borne Plant Disease. Front. Microbiol. 2020, 11, 585404. [Google Scholar] [CrossRef]
- He, D.-C.; He, M.-H.; Amalin, D.M.; Liu, W.; Alvindia, D.G.; Zhan, J. Biological Control of Plant Diseases: An Evolutionary and Eco-Economic Consideration. Pathogens 2021, 10, 1311. [Google Scholar] [CrossRef]
- Akram, S.; Ahmed, A.; He, P.; He, P.; Liu, Y.; Wu, Y.; Munir, S.; He, Y. Uniting the Role of Endophytic Fungi against Plant Pathogens and Their Interaction. J. Fungi 2023, 9, 72. [Google Scholar] [CrossRef]
- Köhl, J.; Kolnaar, R.; Ravensberg, W.J. Mode of Action of Microbial Biological Control Agents against Plant Diseases: Relevance beyond Efficacy. Front. Plant Sci. 2019, 10, 845. [Google Scholar] [CrossRef] [Green Version]
- Thambugala, K.M.; Daranagama, D.A.; Phillips, A.J.L.; Kannangara, S.D.; Promputtha, I. Fungi vs. Fungi in Biocontrol: An Overview of Fungal Antagonists Applied against Fungal Plant Pathogens. Front. Cell. Infect. Microbiol. 2020, 10, 604923. [Google Scholar] [CrossRef]
- Segaran, G.; Sathiavelu, M. Fungal Endophytes: A Potent Biocontrol Agent and a Bioactive Metabolites Reservoir. Biocatal. Agric. Biotechnol. 2019, 21, 101284. [Google Scholar] [CrossRef]
- Maloy, O.C.; Lang, K.J. Carl Freiherr von Tubeuf: Pioneer in Biological Control of Plant Diseases. Annu. Rev. Phytopathol. 2003, 41, 41–52. [Google Scholar] [CrossRef] [Green Version]
- Rabiey, M.; Hailey, L.E.; Roy, S.R.; Grenz, K.; Al-Zadjali, M.A.S.; Barrett, G.A.; Jackson, R.W. Endophytes vs Tree Pathogens and Pests: Can They Be Used as Biological Control Agents to Improve Tree Health? Eur. J. Plant Pathol. 2019, 155, 711–729. [Google Scholar] [CrossRef] [Green Version]
- Weindling, R. Trichoderma lignorum As a Parasite of Other Soil Fungi. Phytopathology 1932, 22, 837–845. [Google Scholar]
- Sutton, J.C.; Li, D.-W.; Peng, G.; Yu, H.; Zhang, P.; Valdebenito-Sanhueza, R.M. Gliocladium roseum a Versatile Adversary of Botrytis cinerea in Crops. Plant Dis. 1997, 81, 316–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrews, J.H. Biological Control in the Phyllosphere. Annu. Rev. Phytopathol. 1992, 30, 603–635. [Google Scholar] [CrossRef] [PubMed]
- Rajani, P.; Rajasekaran, C.; Vasanthakumari, M.M.; Olsson, S.B.; Ravikanth, G.; Uma Shaanker, R. Inhibition of Plant Pathogenic Fungi by Endophytic Trichoderma spp. through Mycoparasitism and Volatile Organic Compounds. Microbiol. Res. 2021, 242, 126595. [Google Scholar] [CrossRef] [PubMed]
- Kiss, L. A Review of Fungal Antagonists of Powdery Mildews and Their Potential as Biocontrol Agents. Pest Manag. Sci. 2003, 59, 475–483. [Google Scholar] [CrossRef]
- Yao, Y.Q.; Lan, F.; Qiao, Y.M.; Wei, J.G.; Huang, R.S.; Li, L.B. Endophytic Fungi Harbored in the Root of Sophora tonkinensis Gapnep: Diversity and Biocontrol Potential against Phytopathogens. MicrobiologyOpen 2017, 6, e00437. [Google Scholar] [CrossRef]
- Schulz, B.; Wanke, U.; Draeger, S.; Aust, H.-J. Endophytes from Herbaceous Plants and Shrubs: Effectiveness of Surface Sterilization Methods. Mycol. Res. 1993, 97, 1447–1450. [Google Scholar] [CrossRef]
- Sahu, P.K.; Tilgam, J.; Mishra, S.; Hamid, S.; Gupta, A.; Jayalakshmi, K.; Verma, S.K.; Kharwar, R.N. Surface Sterilization for Isolation of Endophytes: Ensuring What (Not) to Grow. J. Basic Microbiol. 2022, 62, 647–668. [Google Scholar] [CrossRef] [PubMed]
- Tibpromma, S.; Hyde, K.D.; Bhat, J.D.; Mortimer, P.E.; Xu, J.; Promputtha, I.; Doilom, M.; Yang, J.-B.; Tang, A.M.C.; Karunarathna, S.C. Identification of Endophytic Fungi from Leaves of Pandanaceae Based on Their Morphotypes and DNA Sequence Data from Southern Thailand. MycoKeys 2018, 33, 25–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, W.; Yao, Z.; Li, J.; Sun, C.; Xia, J.; Wang, B.; Shi, D.; Ren, L. Diversity and Antimicrobial Activity of Endophytic Fungi Isolated from Securinega suffruticosa in the Yellow River Delta. PLoS ONE 2020, 15, e0229589. [Google Scholar] [CrossRef] [PubMed]
- Dos Reis, J.B.A.; Lorenzi, A.S.; do Vale, H.M.M. Methods Used for the Study of Endophytic Fungi: A Review on Methodologies and Challenges, and Associated Tips. Arch. Microbiol. 2022, 204, 675. [Google Scholar] [CrossRef] [PubMed]
- Wulandari, A.P.; Triani, E.; Sari, K.; Prasetyani, M.; Nurzaman, M.; Purwati, R.D.; Ermawar, R.A.; Nuraini, A. Endophytic Microbiome of Boehmeria nivea and Their Antagonism against Latent Fungal Pathogens in Plants. BMC Microbiol. 2022, 22, 320. [Google Scholar] [CrossRef]
- De Almeida, A.B.; Concas, J.; Campos, M.D.; Materatski, P.; Varanda, C.; Patanita, M.; Murolo, S.; Romanazzi, G.; Félix, M.d.R. Endophytic Fungi as Potential Biological Control Agents against Grapevine Trunk Diseases in Alentejo Region. Biology 2020, 9, 420. [Google Scholar] [CrossRef]
- De Carvalho, C.R.; Ferreira-D’Silva, A.; Wedge, D.E.; Cantrell, C.L.; Rosa, L.H. Antifungal Activities of Cytochalasins Produced by Diaporthe miriciae, an Endophytic Fungus Associated with Tropical Medicinal Plants. Can. J. Microbiol. 2018, 64, 835–843. [Google Scholar] [CrossRef]
- Kapoor, N.; Ntemafack, A.; Chouhan, R.; Gandhi, S.G. Anti-Phytopathogenic and Plant Growth Promoting Potential of Endophytic Fungi Isolated from Dysoxylum gotadhora. Arch. Phytopathol. Pflanzenschutz 2022, 55, 454–473. [Google Scholar] [CrossRef]
- Azuddin, N.F.; Mohd, M.H.; Rosely, N.F.N.; Mansor, A.; Zakaria, L. Molecular Phylogeny of Endophytic Fungi from Rattan (Calamus castaneus Griff.) Spines and Their Antagonistic Activities against Plant Pathogenic Fungi. J. Fungi 2021, 7, 301. [Google Scholar] [CrossRef]
- Zhao, X.; Song, P.; Hou, D.; Li, Z.; Hu, Z. Antifungal Activity, Identification and Biosynthetic Potential Analysis of Fungi against Rhizoctonia cerealis. Ann. Microbiol. 2021, 71, 41. [Google Scholar] [CrossRef]
- Morais, E.M.; Silva, A.A.R.; de Sousa, F.W.A.; de Azevedo, I.M.B.; Silva, H.F.; Santos, A.M.G.; Beserra Júnior, J.E.A.; de Carvalho, C.P.; Eberlin, M.N.; Porcari, A.M.; et al. Endophytic Trichoderma Strains Isolated from Forest Species of the Cerrado-Caatinga Ecotone Are Potential Biocontrol Agents against Crop Pathogenic Fungi. PLoS ONE 2022, 17, e0265824. [Google Scholar] [CrossRef]
- Rabha, A.J.; Naglot, A.; Sharma, G.D.; Gogoi, H.K.; Veer, V. In Vitro Evaluation of Antagonism of Endophytic Colletotrichum gloeosporioides against Potent Fungal Pathogens of Camellia sinensis. Indian J. Microbiol. 2014, 54, 302–309. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.; Li, M.; Hu, Z.; Shao, Y.; Ying, J.; Zhang, H. The Potential Use of Fungal Co-Culture Strategy for Discovery of New Secondary Metabolites. Microorganisms 2023, 11, 464. [Google Scholar] [CrossRef]
- Daroodi, Z.; Taheri, P.; Tarighi, S. Acrophialophora Jodhpurensis: An Endophytic Plant Growth Promoting Fungus with Biocontrol Effect against Alternaria alternata. Front. Plant Sci. 2022, 13, 984583. [Google Scholar] [CrossRef]
- Zhao, X.; Hu, Z.; Hou, D.; Xu, H.; Song, P. Biodiversity and Antifungal Potential of Endophytic Fungi from the Medicinal Plant Cornus officinalis. Symbiosis 2020, 81, 223–233. [Google Scholar] [CrossRef]
- Noel, Z.A.; Roze, L.V.; Breunig, M.; Trail, F. Endophytic Fungi as a Promising Biocontrol Agent to Protect Wheat from Fusarium graminearum Head Blight. Plant Dis. 2022, 106, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Du, T.-Y.; Karunarathna, S.C.; Zhang, X.; Dai, D.-Q.; Mapook, A.; Suwannarach, N.; Xu, J.-C.; Stephenson, S.L.; Elgorban, A.M.; Al-Rejaie, S.; et al. Endophytic Fungi Associated with Aquilaria sinensis (Agarwood) from China Show Antagonism against Bacterial and Fungal Pathogens. J. Fungi 2022, 8, 1197. [Google Scholar] [CrossRef]
- Zhao, X.; Hou, D.; Xu, J.; Wang, K.; Hu, Z. Antagonistic Activity of Fungal Strains against Fusarium Crown Rot. Plants 2022, 11, 255. [Google Scholar] [CrossRef]
- Abro, M.A.; Sun, X.; Li, X.; Jatoi, G.H.; Guo, L.-D. Biocontrol Potential of Fungal Endophytes against Fusarium oxysporum f. sp. Cucumerinum Causing Wilt in Cucumber. Plant Pathol. J. 2019, 35, 598–608. [Google Scholar] [CrossRef] [PubMed]
- Yehia, R.S.; Osman, G.H.; Assaggaf, H.; Salem, R.; Mohamed, M.S.M. Isolation of Potential Antimicrobial Metabolites from Endophytic Fungus Cladosporium cladosporioides from Endemic Plant Zygophyllum mandavillei. S. Afr. J. Bot. 2020, 134, 296–302. [Google Scholar] [CrossRef]
- Putri, N.D.; Muhibuddin, A.; Aini, L.Q. The Potential of Endophytic Fungi in Promoting Rice Plant Growth and Suppressing Blast Disease. J. Trop. Plant Prot. 2021, 2, 41–49. [Google Scholar] [CrossRef]
- Moreira, C.C.; Luna, G.L.F.; Soriano, B.; Cavicchioli, R.; Bogas, A.C.; de Sousa, C.P.; Anibal, F.F.; Lacava, P.T. Leishmanicidal, Cytotoxic, Antimicrobial and Enzymatic Activities of Diaporthe Species, a Mangrove-Isolated Endophytic Fungus. Afr. J. Microbiol. Res. 2020, 14, 516–524. [Google Scholar] [CrossRef]
- Harwoko, H.; Daletos, G.; Stuhldreier, F.; Lee, J.; Wesselborg, S.; Feldbrügge, M.; Müller, W.E.G.; Kalscheuer, R.; Ancheeva, E.; Proksch, P. Dithiodiketopiperazine Derivatives from Endophytic Fungi Trichoderma harzianum and Epicoccum nigrum. Nat. Prod. Res. 2019, 35, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, S.; Masumi, S. The Antimicrobial Activity of Endophytic Fungi Isolated from Thymus spp. J. Med. Plants Byprod. 2022. [Google Scholar] [CrossRef]
- Mota, S.F.; Pádua, P.F.; Ferreira, A.N.; de Barros Wanderley Gomes, L.; Dias, M.A.; Souza, E.A.; Pereira, O.L.; Cardoso, P.G. Biological Control of Common Bean Diseases Using Endophytic Induratia spp. Biol. Control 2021, 159, 104629. [Google Scholar] [CrossRef]
- Matušinsky, P.; Sedláková, B.; Bleša, D. Compatible Interaction of Brachypodium distachyon and Endophytic Fungus Microdochium bolleyi. PLoS ONE 2022, 17, e0265357. [Google Scholar] [CrossRef]
- Abdel-Rahim, I.R.; Abo-Elyousr, K.A.M. Talaromyces pinophilus Strain AUN-1 as a Novel Mycoparasite of Botrytis cinerea, the Pathogen of Onion Scape and Umbel Blights. Microbiol. Res. 2018, 212–213, 1–9. [Google Scholar] [CrossRef]
- Baiyee, B.; Ito, S.-I.; Sunpapao, A. Trichoderma asperellum T1 Mediated Antifungal Activity and Induced Defense Response against Leaf Spot Fungi in Lettuce (Lactuca sativa L.). Physiol. Mol. Plant Pathol. 2019, 106, 96–101. [Google Scholar] [CrossRef]
- Sallam, N.; Ali, E.F.; Seleim, M.A.A.; Khalil Bagy, H.M.M. Endophytic Fungi Associated with Soybean Plants and Their Antagonistic Activity against Rhizoctonia solani. Egypt. J. Biol. Pest Control 2021, 31, 54. [Google Scholar] [CrossRef]
- Brooks, S.; Klomchit, A.; Chimthai, S.; Jaidee, W.; Bastian, A.C. Xylaria feejeensis, SRNE2BP a Fungal Endophyte with Biocontrol Properties to Control Early Blight and Fusarium Wilt Disease in Tomato and Plant Growth Promotion Activity. Curr. Microbiol. 2022, 79, 108. [Google Scholar] [CrossRef] [PubMed]
- De Vrije, T.; Antoine, N.; Buitelaar, R.M.; Bruckner, S.; Dissevelt, M.; Durand, A.; Gerlagh, M.; Jones, E.E.; Lüth, P.; Oostra, J.; et al. The Fungal Biocontrol Agent Coniothyrium minitans: Production by Solid-State Fermentation, Application and Marketing. Appl. Microbiol. Biotechnol. 2001, 56, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Jiang, D.; Yi, X.; Fu, Y.; Li, G.; Whipps, J.M. Production, Survival and Efficacy of Coniothyrium minitans Conidia Produced in Shaken Liquid Culture. FEMS Microbiol. Lett. 2003, 227, 127–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahgal, M. Fungal Enzymes in Biocontrol of Phytopathogens. In Progress in Mycology; Satyanarayana, T., Deshmukh, S.K., Deshpande, M.V., Eds.; Springer: Singapore, 2021; pp. 327–356. ISBN 9789811633065. [Google Scholar]
- Ferreira, F.V.; Musumeci, M.A. Trichoderma as Biological Control Agent: Scope and Prospects to Improve Efficacy. World J. Microbiol. Biotechnol. 2021, 37, 90. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; He, P.; He, P.; Munir, S.; Ahmed, A.; Wu, Y.; Yang, Y.; Lu, J.; Wang, J.; Yang, J.; et al. Potential Biocontrol Efficiency of Trichoderma Species against Oomycete Pathogens. Front. Microbiol. 2022, 13, 974024. [Google Scholar] [CrossRef]
- Nascimento, V.C.; Rodrigues-Santos, K.C.; Carvalho-Alencar, K.L.; Castro, M.B.; Kruger, R.H.; Lopes, F.A.C. Trichoderma: Biological Control Efficiency and Perspectives for the Brazilian Midwest States and Tocantins. Braz. J. Biol. 2022, 82, e260161. [Google Scholar] [CrossRef]
- Cumagun, C.J.R. Managing Plant Diseases and Promoting Sustainability and Productivity with Trichoderma: The Philippine Experience. J. Agric. Sci. Tech. 2012, 14, 699–714. [Google Scholar]
- Trutmann, P.; Keane, P.J. Trichoderma koningii as a Biological Control Agent for Sclerotinia sclerotiorum in Southern Australia. Soil Biol. Biochem. 1990, 22, 43–50. [Google Scholar] [CrossRef]
- Kifle, M.H.; Yobo, K.S.; Laing, M.D. Biocontrol of Aspergillus flavus in Groundnut Using Trichoderma harzianum Stain Kd. J. Plant Dis. Prot. 2017, 124, 51–56. [Google Scholar] [CrossRef]
- Law, J.W.-F.; Ser, H.-L.; Khan, T.M.; Chuah, L.-H.; Pusparajah, P.; Chan, K.-G.; Goh, B.-H.; Lee, L.-H. The Potential of Streptomyces as Biocontrol Agents against the Rice Blast Fungus, Magnaporthe oryzae (Pyricularia oryzae). Front. Microbiol. 2017, 8, 3. [Google Scholar] [CrossRef] [Green Version]
- John, N.S.; Anjanadevi, I.P.; Jeeva, M.L. Efficacy of Cassava By-products as Carrier Material of Trichoderma harzianum, a Biocontrol Agent Against Sclerotium rolfsii Causing Collar Rot in Elephant Foot Yam. J. Root Crops. 2014, 40, 74–79. [Google Scholar]
- Kodithuwakku, R.D.; Wijekoon, W.M.R.W.B. Determination of Shelf-Life of Trichoderma Asperellum in Solid- and Liquid-Based Formulations. Sri Lanka J. Food Agric. 2018, 4, 15. [Google Scholar] [CrossRef] [Green Version]
- Thangavelu, R.; Palaniswami, A.; Velazhahan, R. Mass Production of Trichoderma harzianum for Managing Fusarium Wilt of Banana. Agric. Ecosyst. Environ. 2004, 103, 259–263. [Google Scholar] [CrossRef]
- Petros Kubheka, B.; Weldegabir Ziena, L. Trichoderma: A Biofertilizer and a Bio-Fungicide for Sustainable Crop Production. In Trichoderma—Technology and Uses; IntechOpen: London, UK, 2022; pp. 1–16. [Google Scholar]
- Guzmán-Guzmán, P.; Kumar, A.; de los Santos-Villalobos, S.; Parra-Cota, F.I.; Orozco-Mosqueda, M.d.C.; Fadiji, A.E.; Hyder, S.; Babalola, O.O.; Santoyo, G. Trichoderma Species: Our Best Fungal Allies in the Biocontrol of Plant Diseases—A Review. Plants 2023, 12, 432. [Google Scholar] [CrossRef] [PubMed]
- Omann, M.; Zeilinger, S. How a Mycoparasite Employs G-Protein Signaling: Using the Example of Trichoderma. J. Signal Transduct. 2010, 2010, 123126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pisi, A.; Roberti, R.; Zakrisson, E.; Filippini, G.; Mantovani, W.; Cesari, A. SEM Investigation about Hyphal Relationships between Some Antagonistic Fungi against Fusarium spp. Foot Rot Pathogen of Wheat. Phytopathol. Mediterr. 2001, 40, 37–44. [Google Scholar]
- Chet, I.; Harman, G.E.; Baker, R. Trichoderma hamatum: Its Hyphal Interactions with Rhizoctonia solani and Pythium spp. Microb. Ecol. 1981, 7, 29–38. Available online: http://www.jstor.org/stable/4250642 (accessed on 7 April 2023). [CrossRef]
- Gams, W.; Diederich, P.; Põldmaa, K. Fungicolous Fungi. In Biodiversity of Fungi; Mueller, G., Bills, G., Foster, M., Eds.; Elsevier: Cambridge, MA, USA, 2004; pp. 343–392. ISBN 9780125095518. [Google Scholar]
- Can, H.; Kal, U.; Kayak, N.; Dal, Y.; Turkmen, O. Use of Microbial Inoculants against Biotic Stress in Vegetable Crops: Physiological and Molecular Aspect; Sustainable Horticulture-Microbial Inoculants and Stress Interaction; Elsevier: Cambridge, MA, USA, 2022; pp. 263–332. [Google Scholar]
- Druzhinina, I.S.; Seidl-Seiboth, V.; Herrera-Estrella, A.; Horwitz, B.A.; Kenerley, C.M.; Monte, E.; Mukherjee, P.K.; Zeilinger, S.; Grigoriev, I.V.; Kubicek, C.P. Trichoderma: The Genomics of Opportunistic Success. Nat. Rev. Microbiol. 2011, 9, 749–759. [Google Scholar] [CrossRef] [Green Version]
- Steindorff, A.S.; Ramada, M.H.S.; Coelho, A.S.G.; Miller, R.N.G.; Pappas, G.J., Jr.; Ulhoa, C.J.; Noronha, E.F. Identification of Mycoparasitism-Related Genes against the Phytopathogen Sclerotinia sclerotiorum through Transcriptome and Expression Profile Analysis in Trichoderma harzianum. BMC Genom. 2014, 15, 204. [Google Scholar] [CrossRef] [Green Version]
- Gruber, S.; Seidl-Seiboth, V. Self versus Non-Self: Fungal Cell Wall Degradation in Trichoderma. Microbiology 2012, 158, 26–34. [Google Scholar] [CrossRef] [Green Version]
- Dugan, F.M.; Lupien, S.L.; Hernandez-Bello, M.; Peever, T.L.; Chen, W. Fungi Resident in Chickpea Debris and Their Suppression of Growth and Reproduction of Didymella rabiei under Laboratory Conditions. J. Phytopathol. 2005, 153, 431–439. [Google Scholar] [CrossRef]
- Chet, I.; Baker, R. Isolation and Biocontrol Potential of Trichoderma hamatum from Soil Naturally Suppressive to Rhizoctonia solani. Phytopathology 1981, 71, 286–290. [Google Scholar] [CrossRef]
- Gong, Z.; Zhang, S.; Liu, J. Recent Advances in Chitin Biosynthesis Associated with the Morphology and Secondary Metabolite Synthesis of Filamentous Fungi in Submerged Fermentation. J. Fungi 2023, 9, 205. [Google Scholar] [CrossRef] [PubMed]
- Seidl-Seiboth, V.; Ihrmark, K.; Druzhinina, I.; Karlsson, M. Molecular Evolution of Trichoderma Chitinases. In Biotechnology and Biology of Trichoderma; Gupta, V.K., Schmoll, M., Herrera-Estrella, A., Upadhyay, R.S., Druzhinina, I., Tuohy, M.G., Eds.; Elsevier: Cambridge, MA, USA, 2014; pp. 67–78. ISBN 9780444595768. [Google Scholar]
- Carsolio, C.; Benhamou, N.; Haran, S.; Cortés, C.; Gutiérrez, A.; Chet, I.; Herrera-Estrella, A. Role of the Trichoderma harzianum Endochitinase Gene, ech42, in Mycoparasitism. Appl. Environ. Microbiol. 1999, 65, 929–935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brunner, K.; Montero, M.; Mach, R.L.; Peterbauer, C.K.; Kubicek, C.P. Expression of The ech42 (Endochitinase) Gene of Trichoderma atroviride under Carbon Starvation Is Antagonized via a BrlA-Likecis-Acting Element. FEMS Microbiol. Lett. 2003, 218, 259–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ting, A.S.Y.; Chai, J.Y. Chitinase and β-1,3-Glucanase Activities of Trichoderma harzianum in Response towards Pathogenic and Non-Pathogenic Isolates: Early Indications of Compatibility in Consortium. Biocatal. Agric. Biotechnol. 2015, 4, 109–113. [Google Scholar] [CrossRef]
- Yoshimi, A.; Miyazawa, K.; Abe, K. Function and Biosynthesis of Cell Wall α-1,3-Glucan in Fungi. J. Fungi 2017, 3, 63. [Google Scholar] [CrossRef] [PubMed]
- Aimanianda, V.; Simenel, C.; Garnaud, C.; Clavaud, C.; Tada, R.; Barbin, L.; Mouyna, I.; Heddergott, C.; Popolo, L.; Ohya, Y.; et al. The Dual Activity Responsible for the Elongation and Branching of β-(1,3)-Glucan in the Fungal Cell Wall. MBio 2017, 8, e00619-17. [Google Scholar] [CrossRef] [Green Version]
- Ait-Lahsen, H.; Soler, A.; Rey, M.; de La Cruz, J.; Monte, E.; Llobell, A. An Antifungal Exo-Alpha-1,3-Glucanase (AGN13.1) from the Biocontrol Fungus Trichoderma harzianum. Appl. Environ. Microbiol. 2001, 67, 5833–5839. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Rubio, R.; de Oliveira, H.C.; Rivera, J.; Trevijano-Contador, N. The Fungal Cell Wall: Candida, Cryptococcus, and Aspergillus Species. Front. Microbiol. 2019, 10, 2993. [Google Scholar] [CrossRef]
- Bezerra, V.H.S.; Cardoso, S.L.; Fonseca-Bazzo, Y.; Silveira, D.; Magalhães, P.O.; Souza, P.M. Protease Produced by Endophytic Fungi: A Systematic Review. Molecules 2021, 26, 7062. [Google Scholar] [CrossRef]
- Romero-Contreras, Y.J.; Ramírez-Valdespino, C.A.; Guzmán-Guzmán, P.; Macías-Segoviano, J.I.; Villagómez-Castro, J.C.; Olmedo-Monfil, V. Tal6 from Trichoderma atroviride Is a LysM Effector Involved in Mycoparasitism and Plant Association. Front. Microbiol. 2019, 10, 2231. [Google Scholar] [CrossRef] [PubMed]
- Mason, N.W.H.; de Bello, F.; Doležal, J.; Lepš, J. Niche Overlap Reveals the Effects of Competition, Disturbance and Contrasting Assembly Processes in Experimental Grassland Communities: Grassland Community Assembly Processes. J. Ecol. 2011, 99, 788–796. [Google Scholar] [CrossRef]
- Oszust, K.; Cybulska, J.; Frąc, M. How Do Trichoderma Genus Fungi Win a Nutritional Competition Battle against Soft Fruit Pathogens? A Report on Niche Overlap Nutritional Potentiates. Int. J. Mol. Sci. 2020, 21, 4235. [Google Scholar] [CrossRef] [PubMed]
- Tyśkiewicz, R.; Nowak, A.; Ozimek, E.; Jaroszuk-Ściseł, J. Trichoderma: The Current Status of Its Application in Agriculture for the Biocontrol of Fungal Phytopathogens and Stimulation of Plant Growth. Int. J. Mol. Sci. 2022, 23, 2329. [Google Scholar] [CrossRef]
- Morandi, M.A.B.; Sutton, J.C.; Maffia, L.A. Effects of Host and Microbial Factors on Development of Clonostachys rosea and Control of Botrytis cinerea in Rose. Eur. J. Plant Pathol. 2000, 106, 439–448. [Google Scholar] [CrossRef]
- Yu, J.; Wu, Y.; He, Z.; Li, M.; Zhu, K.; Gao, B. Diversity and Antifungal Activity of Endophytic Fungi Associated with Camellia oleifera. Mycobiology 2018, 46, 85–91. [Google Scholar] [CrossRef] [Green Version]
- Hashem, A.H.; Shehabeldine, A.M.; Abdelaziz, A.M.; Amin, B.H.; Sharaf, M.H. Antifungal Activity of Endophytic Aspergillus terreus Extract against Some Fungi Causing Mucormycosis: Ultrastructural Study. Appl. Biochem. Biotechnol. 2022, 194, 3468–3482. [Google Scholar] [CrossRef]
- Wu, S.-H.; He, J.; Li, X.-N.; Huang, R.; Song, F.; Chen, Y.-W.; Miao, C.-P. Guaiane Sesquiterpenes and Isopimarane Diterpenes from an Endophytic Fungus Xylaria sp. Phytochemistry 2014, 105, 197–204. [Google Scholar] [CrossRef]
- Shi, M.; Chen, L.; Wang, X.-W.; Zhang, T.; Zhao, P.-B.; Song, X.-Y.; Sun, C.-Y.; Chen, X.-L.; Zhou, B.-C.; Zhang, Y.-Z. Antimicrobial Peptaibols from Trichoderma pseudokoningii Induce Programmed Cell Death in Plant Fungal Pathogens. Microbiology 2012, 158, 166–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Chen, Y.; Cai, J.; Liu, X.; Huang, G. Antifungal Activity of Volatile Compounds Generated by Endophytic Fungi Sarocladium brachiariae HND5 against Fusarium oxysporum f. sp. Cubense. PLoS ONE 2021, 16, e0260747. [Google Scholar] [CrossRef] [PubMed]
- Kelemu, S.; White, J.F., Jr.; Muñoz, F.; Takayama, Y. An Endophyte of the Tropical Forage Grass Brachiaria brizantha: Isolating, Identifying, and Characterizing the Fungus, and Determining Its Antimycotic Properties. Can. J. Microbiol. 2001, 47, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Gama, D.S.; Santos, Í.A.F.M.; de Abreu, L.M.; de Medeiros, F.H.V.; Duarte, W.F.; Cardoso, P.G. Endophytic Fungi from Brachiaria Grasses in Brazil and Preliminary Screening of Sclerotinia sclerotiorum Antagonists. Sci. Agric. 2020, 77, e20180210. [Google Scholar] [CrossRef]
- Mejía, L.C.; Rojas, E.I.; Maynard, Z.; Van Bael, S.; Arnold, A.E.; Hebbar, P.; Samuels, G.J.; Robbins, N.; Herre, E.A. Endophytic Fungi as Biocontrol Agents of Theobroma cacao Pathogens. Biol. Control 2008, 46, 4–14. [Google Scholar] [CrossRef]
- Bailey, B.A.; Bae, H.; Strem, M.D.; Crozier, J.; Thomas, S.E.; Samuels, G.J.; Vinyard, B.T.; Holmes, K.A. Antibiosis, Mycoparasitism, and Colonization Success for Endophytic Trichoderma Isolates with Biological Control Potential in Theobroma cacao. Biol. Control 2008, 46, 24–35. [Google Scholar] [CrossRef]
- Shittu, H.O.; Aisagbonhi, E.; Obiazikwor, O.H. Plants’ Innate Defence Mechanisms against Phytopathogens. J. Microbiol. Biotechnol. Food Sci. 2019, 9, 314–319. [Google Scholar] [CrossRef]
- Lu, H.; Wei, T.; Lou, H.; Shu, X.; Chen, Q. A Critical Review on Communication Mechanism within Plant-Endophytic Fungi Interactions to Cope with Biotic and Abiotic Stresses. J. Fungi 2021, 7, 719. [Google Scholar] [CrossRef]
- Suarez-Fernandez, M.; Marhuenda-Egea, F.C.; Lopez-Moya, F.; Arnao, M.B.; Cabrera-Escribano, F.; Nueda, M.J.; Gunsé, B.; Lopez-Llorca, L.V. Chitosan Induces Plant Hormones and Defenses in Tomato Root Exudates. Front. Plant Sci. 2020, 11, 572087. [Google Scholar] [CrossRef]
- Kappel, L.; Kosa, N.; Gruber, S. The Multilateral Efficacy of Chitosan and Trichoderma on Sugar Beet. J. Fungi 2022, 8, 137. [Google Scholar] [CrossRef]
- Shi, X.; Qin, T.; Liu, H.; Wu, M.; Li, J.; Shi, Y.; Gao, Y.; Ren, A. Endophytic Fungi Activated Similar Defense Strategies of Achnatherum sibiricum Host to Different Trophic Types of Pathogens. Front. Microbiol. 2020, 11, 1607. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Sood, P.; Citovsky, V. The Roles of Plant Phenolics in Defence and Communication during Agrobacterium and Rhizobium Infection. Mol. Plant Pathol. 2010, 11, 705–719. [Google Scholar] [CrossRef] [PubMed]
- Franco-Orozco, B.; Berepiki, A.; Ruiz, O.; Gamble, L.; Griffe, L.L.; Wang, S.; Birch, P.R.J.; Kanyuka, K.; Avrova, A. A New Proteinaceous Pathogen-associated Molecular Pattern (PAMP) Identified in Ascomycete Fungi Induces Cell Death in Solanaceae. New Phytol. 2017, 214, 1657–1672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rashad, Y.; Aseel, D.; Hammad, S. Phenolic Compounds against Fungal and Viral Plant Diseases. In Plant Phenolics in Sustainable Agriculture; Lone, R., Shuab, R., Kamili, A.N., Eds.; Springer: Singapore, 2020; pp. 201–219. ISBN 9789811548895. [Google Scholar]
- Pacheco-Trejo, J.; Aquino-Torres, E.; Reyes-Santamaría, M.I.; Islas-Pelcastre, M.; Pérez-Ríos, S.R.; Madariaga-Navarrete, A.; Saucedo-García, M. Plant Defensive Responses Triggered by Trichoderma spp. as Tools to Face Stressful Conditions. Horticulturae 2022, 8, 1181. [Google Scholar] [CrossRef]
- Agostini, R.B.; Postigo, A.; Rius, S.P.; Rech, G.E.; Campos-Bermudez, V.A.; Vargas, W.A. Long-Lasting Primed State in Maize Plants: Salicylic Acid and Steroid Signaling Pathways as Key Players in the Early Activation of Immune Responses in Silks. Mol. Plant. Microbe Interact. 2019, 32, 95–106. [Google Scholar] [CrossRef] [Green Version]
- Ren, C.-G.; Dai, C.-C. Jasmonic Acid Is Involved in the Signaling Pathway for Fungal Endophyte-Induced Volatile Oil Accumulation of Atractylodes lancea Plantlets. BMC Plant Biol. 2012, 12, 128. [Google Scholar] [CrossRef] [Green Version]
- Smirnoff, N.; Arnaud, D. Hydrogen Peroxide Metabolism and Functions in Plants. New Phytol. 2018, 221, 1197–1214. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, Q.-M.; Iswanto, A.B.B.; Son, G.H.; Kim, S.H. Recent Advances in Effector-Triggered Immunity in Plants: New Pieces in the Puzzle Create a Different Paradigm. Int. J. Mol. Sci. 2021, 22, 4709. [Google Scholar] [CrossRef]
- Ding, L.; Xu, X.; Kong, W.; Xia, X.; Zhang, S.; Liu, L.-W.; Liu, A.; Zou, L. Genome-Wide Identification and Expression Analysis of Rice NLR Genes Responsive to the Infections of Xanthomonas oryzae Pv. oryzae and Magnaporthe oryzae. Physiol. Mol. Plant Pathol. 2020, 111, 101488. [Google Scholar] [CrossRef]
- Zhang, S.; Li, C.; Si, J.; Han, Z.; Chen, D. Action Mechanisms of Effectors in Plant-Pathogen Interaction. Int. J. Mol. Sci. 2022, 23, 6758. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, P.; Bae, H. Endophytic Fungi: Key Insights, Emerging Prospects, and Challenges in Natural Product Drug Discovery. Microorganisms 2022, 10, 360. [Google Scholar] [CrossRef] [PubMed]
- Adeleke, B.S.; Ayilara, M.S.; Akinola, S.A.; Babalola, O.O. Biocontrol Mechanisms of Endophytic Fungi. Egypt. J. Biol. Pest Control 2022, 32, 46. [Google Scholar] [CrossRef]
Endophytic Fungus | Host Plant | Part of the Plant Utilized to Isolate the Endophytes | Target Fungal Pathogen | Highest Growth Inhibition% | References |
---|---|---|---|---|---|
Acrophialophora jodhpurensis | Tomato (Lycopersicon esculentum) | Roots | Rhizoctonia solani | 52.5 | [77] |
Alternaria alternata | Japanese cornel dogwood (Cornus officinalis) | Biennial twigs | Alternaria arborescens | 57.1 | [78] |
Alternaria destruens | Wheat (Triticum aestivum) | Stems or heads | Fusarium graminearum | - | [79] |
Alternaria tenuissima | Japanese cornel dogwood (Cornus officinalis) | Biennial twigs | Alternaria alternata | 53.5 | [78] |
Alternaria arborescens | 38.4 | ||||
Annulohypoxylon sp. | Agarwood (Aquilaria sinensis) | Bark from branches and twigs | Alternaria alternate | 70.61 ± 0.03 | [80] |
Penicillium digitatum | 72.96 ± 0.58 | ||||
Aspergillus flavus | Dysoxylum gotadhora | Leaves, seeds, and stems | Verticillium dahliae | 59.980 ± 0.889 | [71] |
Fusarium oxysporum | 52.678 ± 1.351 | ||||
Aspergillus fumigatus | Verticillium dahliae | 48.550 ± 1.255 | |||
Fusarium oxysporum | 40.184 ± 0.615 | ||||
Aspergillus niger | Verticillium dahliae | 52.964 ± 1.369 | |||
Fusarium oxysporum | 42.863 ± 0.657 | ||||
Botryosphaeria berengeriana | Japanese cornel dogwood (Cornus officinalis) | Triennial twigs | Alternaria alternate | 29.3 | [78] |
Botryosphaeria dothidea | 59.6 | ||||
Colletotrichum gloeosporioides | 37.6 | ||||
Botryosphaeria dothidea | Alternaria alternate | 72.4 | |||
Alternaria arborescens | 75.3 | ||||
Botryosphaeria dothidea | 69.6 | ||||
Colletotrichum gloeosporioides | 71.2 | ||||
- | Rhizoctonia cerealis | 84.6 | [73] | ||
Fusarium pseudograminearum | 80.3 | [81] | |||
Cladosporium sp. | Tomato (Lycopersicon esculentum) | Stems | Fusarium oxysporum | 38.2 ± 7.4 | [82] |
Cladosporium cladosporioides | Zygophyllum mandavillei | Leaves | Aspergillus flavus Fusarium solani | - | [83] |
Colletotrichum gloeosporioides | Japanese cornel dogwood (Cornus officinalis) | Triennial twigs | Alternaria alternata | 52.8 | [78] |
Botryosphaeria dothidea | 30.3 | ||||
Curvularia chiangmaiensis | Rice plants (Oryza sativa) | - | Pyricularia oryzae | - | [84] |
Diaporthe spp. | Avicennia nitida | Branches | Colletotrichum sp. | 33 | [85] |
Fusarium oxysporum | 50 | ||||
Rhizopus microspores | 62 | ||||
Epicoccum nigrum | Common ginger (Zingiber officinale) and Salix sp. | Leaves | Ustilago maydis | - | [86] |
Eupenicillium javanicum | Agarwood (Aquilaria sinensis) | Leaves | Fusarium oxysporum | 43.3 ± 0.7 | [82] |
Fusarium commune | Wheat (Triticum aestivum) | Stems or heads | Fusarium graminearum | - | [79] |
Fusarium oxysporum | Wheat (Triticum aestivum) | Stems or heads | Fusarium graminearum | - | [79] |
Fusarium solani | Rice plants (Oryza sativa) | - | Pyricularia oryzae | - | [84] |
Fusarium subglutinans | Thymus spp. | - | Botrytis cinerea | 61.33 | [87] |
Guignardia mangiferae | Mangrove (Rhizophora stylosa) | Stems | Fusarium oxysporum | 47.3 ± 3.1 | [82] |
Hypocrea sp. | Agarwood (Aquilaria sinensis) | Leaves | Fusarium oxysporum | 44.4 ± 0.4 | [82] |
Induratia coffeana | Common bean (Phaseolus vulgaris) | Seedlings | Colletotrichum lindemuthianum | 99.64 ± 0.57 | [88] |
Sclerotinia sclerotiorum | 70.83 ± 2.60 | ||||
Induratia yucatanensis | Colletotrichum lindemuthianum | 77.22 ± 4.19 | |||
Sclerotinia sclerotiorum | 40.42 ± 4.39 | ||||
Lasiodiplodia theobromae | Agarwood (Aquilaria sinensis) | Leaves | Fusarium oxysporum | 40.2 ± 0.3 | [82] |
Microdochium bolleyi | Wheat (Triticum aestivum) | Roots | Fusarium culmorum | - | [89] |
Neurospora sp. | Agarwood (Aquilaria sinensis) | Leaves | Fusarium oxysporum | 43.1 ± 1.0 | [82] |
Penicillium sp. | Tomato (Lycopersicon esculentum) | Stems | Fusarium oxysporum | 66.4 ± 4.6 | [82] |
Penicillium thomii | Dysoxylum gotadhora | Leaves, seeds and stems | Verticillium dahliae | 44.137 ± 1.141 | [71] |
Fusarium oxysporum | 58.914 ± 1.943 | ||||
Phyllosticta fallopiae | Japanese cornel dogwood (Cornus officinalis) | Leaves | Alternaria alternate | 52.2 | [78] |
Alternaria arborescens | 54.1 | ||||
Botryosphaeria dothidea | 56.9 | ||||
Colletotrichum gloeosporioides | 53.2 | ||||
Porostereum sp. | Dysoxylum gotadhora | Leaves, seeds and stems | Verticillium dahliae | 66.205 ± 1.711 | [71] |
Fusarium oxysporum | 66.974 ± 1.026 | ||||
Talaromyces pinophilus | Onion (Allium cepa) | Seeds | Botrytis cinerea | - | [90] |
Trichoderma sp. | Star anise (Illicium verum) | Leaves | Fusarium oxysporum | 39.3 ± 0.4 | [82] |
Forest tree species | Leaves | Colletotrichum truncatum | 50–70 | [74] | |
Lasiodiplodia theobromae | 30–78 | ||||
Macrophomina phaseolina | 49–78 | ||||
Sclerotium delphinii | 6–62 | ||||
Trichoderma asperellum | Lettuce (Lactuca sativa) | Leaves | Corynespora cassiicola | 83.79 | [91] |
Curvularia aeria | 85.71 | ||||
Rice plants (Oryza sativa) | - | Pyricularia oryzae | - | [84] | |
Soybean (Glycine max) | Roots | Rhizoctonia solani | 42 | [92] | |
Trichoderma atroviride | Soybean (Glycine max) | Roots | Rhizoctonia solani | 55 | [92] |
Trichoderma harzianum | Common ginger (Zingiber officinale) and Salix sp. | Leaves | Ustilago maydis | - | [86] |
Rattan (Calamus castaneus) | Colletotrichum scovellei | 85.80 ± 5.47 | [72] | ||
Colletotrichum truncatum | 89.33 ± 2.99 | ||||
Diaporthe pascoei | 66.96 ± 1.56 | ||||
Fusarium fujikuroi | 71.25 ± 1.50 | ||||
Fusarium oxysporum | 76.74 ± 4.45 | ||||
Fusarium proliferatum | 57.38 ± 17.22 | ||||
Fusarium solani | 62.28 ± 2.15 | ||||
Lasiodiplodia pseudotheobromae | 73.78 ± 1.09 | ||||
Lasiodiplodia theobromae | 82.86 ± 1.28 | ||||
Pestalotiopsis mangiferae | 88.89 ± 1.41 | ||||
Trichoderma koningiospsis | Spines | Colletotrichum scovellei | 89.45 ± 2.55 | ||
Colletotrichum truncatum | 80.05 ± 5.75 | ||||
Diaporthe pascoei | 66.67 ± 9.30 | ||||
Fusarium fujikuroi | 59.94 ± 11.16 | ||||
Fusarium oxysporum | 76.04 ± 1.74 | ||||
Fusarium proliferatum | 51.63 ± 13.52 | ||||
Fusarium solani | 74.56 ± 2.72 | ||||
Lasiodiplodia pseudotheobromae | 93.56 ± 1.00 | ||||
Lasiodiplodia theobromae | 77.62 ± 6.30 | ||||
Pestalotiopsis mangiferae | 60.00 ± 1.99 | ||||
Trichoderma longibrachiatum | Soybean (Glycine max) | Roots | Rhizoctonia solani | 87 | [92] |
Xylaria feejeensis | Mangrove trees (Ceriops decandra, Rhizophora apiculate, R. mucronata, and Xylocarpus granatum) | Leaves, petioles, and roots | Alternaria solani | 60–75 | [93] |
Fusarium oxysporum | 87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Priyashantha, A.K.H.; Karunarathna, S.C.; Lu, L.; Tibpromma, S. Fungal Endophytes: An Alternative Biocontrol Agent against Phytopathogenic Fungi. Encyclopedia 2023, 3, 759-780. https://doi.org/10.3390/encyclopedia3020055
Priyashantha AKH, Karunarathna SC, Lu L, Tibpromma S. Fungal Endophytes: An Alternative Biocontrol Agent against Phytopathogenic Fungi. Encyclopedia. 2023; 3(2):759-780. https://doi.org/10.3390/encyclopedia3020055
Chicago/Turabian StylePriyashantha, Alviti Kankanamalage Hasith, Samantha C. Karunarathna, Li Lu, and Saowaluck Tibpromma. 2023. "Fungal Endophytes: An Alternative Biocontrol Agent against Phytopathogenic Fungi" Encyclopedia 3, no. 2: 759-780. https://doi.org/10.3390/encyclopedia3020055