Voltage and Frequency Control of Balanced/Unbalanced Distribution System Using the SMES System in the Presence of Wind Energy
Abstract
:1. Introduction
The Main Contributions
- It proposes a control method to alleviate frequency and voltage fluctuations in a balanced/unbalanced distribution system connected to high wind power penetration during wind gusts.
- It achieves a power leveling strategy during wind gusts.
- The FLC technique is proposed for a DC-DC chopper to define the charging/discharging process of the SMES system.
- It designs a bi-directional VSC based on a PI controller to achieve reactive power support of the main grid.
- It smooths the real power output during wind gusts.
2. System Model
2.1. System Configuration
2.2. Wind System Model
2.3. SMES Model
3. The Proposed Control Technique of SMES
4. Simulation Results and Discussion
4.1. Balanced Case
4.2. Unbalanced Case
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Renewables Global Status Report—REN21. 2020. Available online: https://www.ren21.net/reports/global-status-report/?gclid=Cj0KCQjwwuD7BRDBARIsAK_5YhUmsAuLdVfGwLa7hW6bd3_1oaBBaUdcPE9s9tQm6SAY0CWkk-nB1ZAaAlHREALw_wcB (accessed on 3 October 2020).
- Eminoglu, U. A New Model for Wind Turbine Systems. Electr. Power Components Syst. 2009, 37, 1180–1193. [Google Scholar] [CrossRef]
- Li, C.; University of Birmingham; Deng, J.; Zhang, X.-P. Coordinated design and application of robust damping controllers for shunt FACTS devices to enhance small-signal stability of large-scale power systems. CSEE J. Power Energy Syst. 2017, 3, 399–407. [Google Scholar] [CrossRef]
- Wan, Y.; Murad, M.A.A.; Liu, M.; Milano, F. Voltage Frequency Control Using SVC Devices Coupled with Voltage Dependent Loads. IEEE Trans. Power Syst. 2018, 34, 1589–1597. [Google Scholar] [CrossRef]
- Pereira, R.; Ferreira, C.M.M.; Barbosa, F.M. Comparative study of STATCOM and SVC performance on Dynamic Voltage Collapse of an Electric Power System with Wind Generation. IEEE Lat. Am. Trans. 2014, 12, 138–145. [Google Scholar] [CrossRef] [Green Version]
- Kumar, H.; Dahiya, R. FACTS Device Control Strategy Using Optimal Number of PMU. In Proceedings of the International Conference on Advances in Electronics, Electrical & Computational Intelligence (ICAEEC), Prayagraj, India, 31 May–1 June 2019. [Google Scholar]
- Li, C.; Disfani, V.R.; Pecenak, Z.K.; Mohajeryami, S.; Kleissl, J. Optimal OLTC voltage control scheme to enable high solar penetrations. Electr. Power Syst. Res. 2018, 160, 318–326. [Google Scholar] [CrossRef] [Green Version]
- Gu, M.; Meegahapola, L.G.; Wong, A.K.L. Coordinated Voltage and Frequency Control in Hybrid AC/MT-HVDC Power Grids for Stability Improvement. IEEE Trans. Power Syst. 2021, 36, 635–647. [Google Scholar] [CrossRef]
- Sanampudi, N.; Kanakasabapathy, P. Integrated voltage control and frequency regulation for stand-alone micro-hydro power plant. Mater. Today Proc. 2021. [Google Scholar] [CrossRef]
- Babaei, M.; Muyeen, S.; Islam, S. Transiently stable intentional controlled islanding considering post-islanding voltage and frequency stability constraints. Int. J. Electr. Power Energy Syst. 2021, 127, 106650. [Google Scholar] [CrossRef]
- Haider, W.; Hassan, S.J.U.; Mehdi, A.; Hussain, A.; Adjayeng, G.O.M.; Kim, C.-H. Voltage Profile Enhancement and Loss Minimization Using Optimal Placement and Sizing of Distributed Generation in Reconfigured Network. Machines 2021, 9, 20. [Google Scholar] [CrossRef]
- Shigenobu, R.; Nakadomari, A.; Hong, Y.-Y.; Mandal, P.; Takahashi, H.; Senjyu, T. Optimization of Voltage Unbalance Compensation by Smart Inverter. Energies 2020, 13, 4623. [Google Scholar] [CrossRef]
- Xu, H.; Wang, C.; Lu, C.; Lu, Z. An adaptive wind power smoothing method with energy storage system. IEEE Power Energy Soc. Gen. Meet. 2014, 1–5. [Google Scholar] [CrossRef]
- Shin, S.-S.; Oh, J.-S.; Jang, S.-H.; Cha, J.-H.; Kim, J.-E. Active and Reactive Power Control of ESS in Distribution System for Improvement of Power Smoothing Control. J. Electr. Eng. Technol. 2017, 12, 1007–1015. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Srivastava, A. Voltage Control Strategy for Energy Storage System in Sustainable Distribution System Operation. Energies 2021, 14, 832. [Google Scholar] [CrossRef]
- Gong, K.; Shi, J.; Liu, Y.; Wang, Z.; Ren, L.; Zhang, Y. Application of SMES in the Microgrid Based on Fuzzy Control. IEEE Trans. Appl. Supercond. 2016, 26, 1–5. [Google Scholar] [CrossRef]
- Wang, Z.; Zou, Z.; Zheng, Y. Design and Control of a Photovoltaic Energy and SMES Hybrid System with Current-Source Grid Inverter. IEEE Trans. Appl. Supercond. 2013, 23, 5701505. [Google Scholar] [CrossRef]
- Hutchinson, A.; Gladwin, D.T. Optimisation of a wind power site through utilisation of flywheel energy storage technology. Energy Rep. 2020, 6, 259–265. [Google Scholar] [CrossRef]
- Ruddell, A. Flywheel energy storage technologies for wind energy systems. In Stand-Alone and Hybrid Wind Energy Systems; Elsevier: Amsterdam, The Netherlands, 2010; pp. 366–392. [Google Scholar]
- He, G.; Chen, Q.; Kang, C.; Xia, Q.; Poolla, K. Cooperation of Wind Power and Battery Storage to Provide Frequency Regulation in Power Markets. IEEE Trans. Power Syst. 2017, 32, 3559–3568. [Google Scholar] [CrossRef]
- Kang, B.-K.; Kim, S.-T.; Bae, S.-H.; Park, J.-W. Effect of a SMES in Power Distribution Network With PV System and PBEVs. IEEE Trans. Appl. Supercond. 2013, 23, 5700104. [Google Scholar] [CrossRef]
- Salama, H.; Vokony, I. Comparison of different electric vehicle integration approaches in presence of photovoltaic and superconducting magnetic energy storage systems. J. Clean. Prod. 2020, 260, 121099. [Google Scholar] [CrossRef]
- Aly, M.M.; Salama, H.; Abdel-Akher, M. Power control of fluctuating wind/PV generations in an isolated Microgrid based on superconducting magnetic energy storage. In Proceedings of the 2016 Eighteenth International Middle East Power Systems Conference (MEPCON), Cairo, Egypt, 27–29 December 2016; pp. 419–424. [Google Scholar]
- Salama, H.S.; Said, S.M.; Vokony, I.; Hartmann, B. Adaptive Coordination Strategy Based on Fuzzy Control for Electric Vehicles and Superconducting Magnetic Energy Storage—Towards Reliably Operating Utility Grids. IEEE Access 2021, 9, 61662–61670. [Google Scholar] [CrossRef]
- Yang, B.; Wang, J.; Zhang, X.; Yu, L.; Shu, H.; Yu, T.; Sun, L. Control of SMES systems in distribution networks with renewable energy integration: A perturbation estimation approach. Energy 2020, 202, 117753. [Google Scholar] [CrossRef]
- Kumar, G.S.; Selvi, V.A.I.; Pandiyan, K. Design and analysis of ML-VSC based SMES with improved power quality features. Mater. Today Proc. 2021. [Google Scholar] [CrossRef]
- Salama, H.; Vokony, I.; Zobair, M.; Aly, M.M. Amelioration the Stability of Power System Coupled with SCIG and PMSG Using Controlled-SMES. In Proceedings of the 2020 International Conference on Innovative Trends in Communication and Computer Engineering (ITCE), Aswan, Egypt, 8–9 February 2020; pp. 346–351. [Google Scholar]
- Salama, H.S.; Vokony, I. Power Stability Enhancement of SCIG and DFIG Based Wind Turbine Using Controlled-SMES. Int. J. Renew. Energy Res. 2019, 9, 147–156. [Google Scholar]
- Mateev, V.; Ivanov, G.; Marinova, I. Comparison of Electromagnetic Formulations for Multilayer HTS Power Cable Modeling. In Proceedings of the 2020 21st International Symposium on Electrical Apparatus & Technologies (SIELA), Bourgas, Bulgaria, 3–6 June 2020; pp. 1–4. [Google Scholar]
- Mir, A.S.; Senroy, N. Adaptive Model Predictive Control Scheme for Application of SMES for Load Frequency Control. IEEE Trans. Power Syst. 2017, 1. [Google Scholar] [CrossRef]
- Xian, W.; Yuan, W.; Yan, Y.; Coombs, T.A. Minimize frequency fluctuations of isolated power system with wind farm by using superconducting magnetic energy storage. In Proceedings of the 2009 International Conference on Power Electronics and Drive Systems (PEDS), Taipei, Taiwan, 2–5 November 2009; pp. 1329–1332. [Google Scholar]
- Krishnamurthy, V.; Kumar, C.R. Constant Power Control Of 15 DFIG Wind Turbines with Superconducting Magnetic Energy Storage System. Int. J. Eng. Trends Technol. 2013, 4, 4193–4200. [Google Scholar]
- Ali, M.H.; Park, M.; Yu, I.-K.; Murata, T.; Tamura, J. Improvement of Wind-Generator Stability by Fuzzy-Logic-Controlled SMES. IEEE Trans. Ind. Appl. 2009, 45, 1045–1051. [Google Scholar] [CrossRef]
- Ali, M.H.; Park, M.; Yu, I.-K.; Murata, T.; Tamura, J.; Wu, B. Enhancement of transient stability by fuzzy logic-controlled SMES considering communication delay. Int. J. Electr. Power Energy Syst. 2009, 31, 402–408. [Google Scholar] [CrossRef]
- Ozmetin, A.E.; Rathnayaka, K.D.D.; Naugle, D.G.; Lyuksyutov, I.F. Strong increase in critical field and current in magnet-superconductor hybrids. J. Appl. Phys. 2009, 105, 07E324. [Google Scholar] [CrossRef]
- Tsuchiya, K.; Kikuchi, A.; Terashima, A.; Norimoto, K.; Uchida, M.; Tawada, M.; Masuzawa, M.; Ohuchi, N.; Wang, X.; Takao, T.; et al. Critical current measurement of commercial REBCO conductors at 4.2 K. Cryogenics 2017, 85, 1–7. [Google Scholar] [CrossRef]
- Amaro, N.; Pina, J.M.; Martins, J.; Ceballos, J.M. A Study on Superconducting Coils for Superconducting Magnetic Energy Storage (SMES) Applications; Springer: Berlin/Heidelberg, Germany, 2013; pp. 449–456. [Google Scholar]
- Glatz, A.; Sadovskyy, I.A.; Welp, U.; Kwok, W.-K.; Crabtree, G.W. The Quest for High Critical Current in Applied High-Temperature Superconductors. J. Supercond. Nov. Magn. 2019, 33, 127–141. [Google Scholar] [CrossRef] [Green Version]
- Skiba, B.; Tomkow, L.; Kulikov, E.; Drobin, V.; Malecha, Z. Experimental and numerical analysis of faulty operation of a superconducting solenoid made of tape with high temperature superconductor. AIP Conf. Proc. 2019, 2163, 20004. [Google Scholar]
- Rupa, J.; Ganesh, S. Power Flow Analysis for Radial Distribution System Using Backward/Forward Sweep Method. Int. J. Electr. Comput. Electron. Commun. Eng. 2014, 8, 1540–1544. [Google Scholar]
- Venkatesh, B.; Chandramohan, S.; Kayalvizhi, N.; Devi, R.K. Optimal reconfiguration of radial distribuion system using artificial intelligence methods. In Proceedings of the 2009 IEEE Toronto International Conference Science and Technology for Humanity (TIC-STH), Toronto, ON, Canada, 26–27 September 2009; pp. 660–665. [Google Scholar]
- Firouzi, M.; Gharehpetian, G.B.; Mozafari, S.B. Application of UIPC to improve power system stability and LVRT capability of SCIG-based wind farms. IET Gener. Transm. Distrib. 2017, 11, 2314–2322. [Google Scholar] [CrossRef]
- Salama, H.S.; Said, S.M.; Aly, M.; Vokony, I.; Hartmann, B. Studying Impacts of Electric Vehicle Functionalities in Wind Energy-Powered Utility Grids With Energy Storage Device. IEEE Access 2021, 9, 45754–45769. [Google Scholar] [CrossRef]
- Heier, S. Grid Integration of Wind Energy; Wiley: Hoboken, NJ, USA, 2014. [Google Scholar]
- Tan, S.; Geng, H.; Yang, G.; Wang, H.; Blaabjerg, F. Modeling framework of voltage-source converters based on equivalence with synchronous generator. J. Mod. Power Syst. Clean Energy 2018, 6, 1291–1305. [Google Scholar] [CrossRef] [Green Version]
- Segundo, J.; Peña-Gallardo, R.; Medina, A.; Núñez-Gutiérrez, C.; Visairo-Cruz, N. A Comprehensive Modeling of a Three-Phase Voltage Source PWM Converter. Math. Probl. Eng. 2015, 2015, 1–11. [Google Scholar] [CrossRef] [Green Version]
Parameter | Unit | Value |
---|---|---|
System RMS voltage | kV | 12.66 |
System frequency | Hz | 50 |
SCIG system | ||
Power rating | MVA | 0.6/0.9 |
RMS voltage | V | 480 |
Resistance of stator, Rs | pu | 0.01965 |
Reactance of stator, Xs | pu | 0.0397 |
Resistance of rotor, Rr | pu | 0.01909 |
Reactance of rotor, Xr | pu | 0.0397 |
Magnetizing reactance, Xm | pu | 1.354 |
SMES system | ||
SMES energy, ESMES | MJ | 1.0 |
SMES coil inductance, LSMES | H | 0.5 |
SMES current, ISMES | A | 2000 |
DC-bus LINK voltage, Vdc-link | V | 2400 |
DC-bus capacitance, Cdc-link | mF | 10 |
Without SMES | With SMES | |||
---|---|---|---|---|
Maximum | Minimum | Maximum | Minimum | |
Voltage at bus 18 (pu) | 0.960 | 0.922 | 1.024 | 1.010 |
Voltage at bus 33 (pu) | 0.948 | 0.923 | 1.004 | 1.001 |
Frequency (Hz) | 50.038 | 49.965 | 50.005 | 50.000 |
Active power at 18 (MW) | 0.650 | 0.250 | 0.420 | 0.390 |
Active power at 33 (MW) | 0.650 | 0.250 | 0.420 | 0.390 |
Grid active power (MW) | 3.300 | 1.900 | 2.890 | 2.660 |
Grid reactive power (MVAR) | 3.750 | 2.950 | 1.000 | 0.750 |
Without SMES | With SMES | |||
---|---|---|---|---|
Maximum | Minimum | Maximum | Minimum | |
Voltage at bus 18 (pu), phase a | 0.990 | 0.950 | 1.036 | 1.019 |
Voltage at bus 18 (pu), phase b | 0.960 | 0.920 | 1.035 | 1.012 |
Voltage at bus 18 (pu), phase c | 0.920 | 0.890 | 1.007 | 0.993 |
Voltage at bus 33 (pu), phase a | 0.980 | 0.950 | 1.015 | 1.017 |
Voltage at bus 33 (pu), phase b | 0.953 | 0.927 | 1.014 | 1.011 |
Voltage at bus 33 (pu), phase c | 0.916 | 0.890 | 0.980 | 0.977 |
Frequency (Hz) | 50.038 | 49.965 | 50.005 | 50.000 |
Active power at 18 (MW) | 0.650 | 0.250 | 0.420 | 0.390 |
Active power at 33 (MW) | 0.650 | 0.250 | 0.420 | 0.390 |
Grid active power (MW) | 3.270 | 1.880 | 2.890 | 2.660 |
Grid reactive power (MVAR) | 3.750 | 2.950 | 1.020 | 0.670 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salama, H.S.; Vokony, I. Voltage and Frequency Control of Balanced/Unbalanced Distribution System Using the SMES System in the Presence of Wind Energy. Electricity 2021, 2, 205-224. https://doi.org/10.3390/electricity2020013
Salama HS, Vokony I. Voltage and Frequency Control of Balanced/Unbalanced Distribution System Using the SMES System in the Presence of Wind Energy. Electricity. 2021; 2(2):205-224. https://doi.org/10.3390/electricity2020013
Chicago/Turabian StyleSalama, Hossam S., and Istvan Vokony. 2021. "Voltage and Frequency Control of Balanced/Unbalanced Distribution System Using the SMES System in the Presence of Wind Energy" Electricity 2, no. 2: 205-224. https://doi.org/10.3390/electricity2020013
APA StyleSalama, H. S., & Vokony, I. (2021). Voltage and Frequency Control of Balanced/Unbalanced Distribution System Using the SMES System in the Presence of Wind Energy. Electricity, 2(2), 205-224. https://doi.org/10.3390/electricity2020013