Effect of Bubbling on Ignition of PMMA Slab: Change in Thermo-Physical and Thermo-Radiative Properties
Abstract
:1. Introduction
- Energy Balance Equations for Solid Phase
2. Materials and Methods
2.1. Radiation Sources and Fire Tests
2.1.1. Radiant Panel
2.1.2. Epiradiator
2.1.3. Cone Calorimeter
2.2. Measurements and Characterization
2.2.1. Temperature Measurement
2.2.2. Thermal Diffusivity Measurement
2.2.3. Radiative Properties Measurement
2.2.4. Imaging
- Image masking on the desired region of interest
- Color plane extraction to HSV plane
- Smoothing Gaussian by 5 × 5 kernel
- Highlight details by 3 × 3 convolution kernel (central weight 10, external weight −1)
- Threshold on dark or bright objects depending on the illumination setup: manual threshold or Clustering threshold depending on the bubble spacing (manual if touching bubbles)
- Proper Open 3 × 3 kernel to separate touching bubbles
- Filling holes to get the full area of the bubbles
- Removing borders objects
- Filtering objects: (i) user selected size, or (ii) circularity with Heywood factor criterion, to remove touching bubbles if the user selected
- Classification
2.3. Material
3. Results
3.1. Time-to-Ignition and In-Depth Absorption
3.2. Study of PMMA Bubbling
3.2.1. Effect of Exposure Time
3.2.2. Effect of Sample Thickness
3.2.3. Effect of the Incident Heat Flux
3.2.4. Effect of the Heat Source
3.3. Evolution of Thermo-Physical and Thermo-Radiative Properties with Bubbling
3.3.1. Thermo-Physical Properties
3.3.2. Thermo-Radiative Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Thermal diffusivity (m2·s−1) | |
heat capacity (J·K−1·kg−1) | |
thickness of sample (m) | |
surface convective heat transfer coefficient (W·m−2·K−1) | |
thermal conductivity (W·m−1·K−1) | |
reflectance | |
bubble radius (m) | |
time (s) | |
time of bubbling start (s) | |
time to ignition (s) | |
temperature (K) | |
initial temperature (K) | |
bubbling temperature (K) | |
ignition temperature (K) | |
surface temperature (K) | |
in-depth distance (m) | |
absorptance (-) | |
pressure variation (Pa) | |
surface emissivity | |
absorption coefficient (m−1) | |
material density (kg·m−3) | |
surface tension (J·m−2) | |
Stefan Boltzmann constant (W·m−2·K−4) | |
temperature rise (K), | |
transmittance |
References
- Beaulieu, P.A.; Dembsey, N.A. Flammability Characteristics at Applied Heat Flux Levels up to 200 kW/m2. Fire Mater. 2008, 32, 61–86. [Google Scholar] [CrossRef]
- Jiang, F.; De Ris, J.L.; Khan, M.M. Absorption of Thermal Energy in PMMA by In-Depth Radiation. Fire Saf. J. 2009, 44, 106–112. [Google Scholar] [CrossRef]
- Tsai, T.H.; Li, M.J.; Shih, I.Y.; Jih, R.; Wong, S.C. Experimental and Numerical Study of Autoignition and Pilot Ignition of PMMA Plates in a Cone Calorimeter. Combust. Flame 2001, 124, 466–480. [Google Scholar] [CrossRef]
- Zhou, Y.Y.; Walther, D.C.; Fernandez-Pello, A.C. Numerical Analysis of Piloted Ignition of Polymeric Materials. Combust. Flame 2002, 131, 147–158. [Google Scholar] [CrossRef]
- Hopkins, D.; Quintiere, J.G. Material Fire Properties and Predictions for Thermoplastics. Fire Saf. J. 1996, 26, 241–268. [Google Scholar] [CrossRef]
- Bal, N.; Rein, G. Numerical Investigation of the Ignition Delay Time of a Translucent Solid at High Radiant Heat Fluxes. Combust. Flame 2011, 158, 1109–1116. [Google Scholar] [CrossRef]
- Delichatsios, M.A.; Zhang, J. An Alternative Way for the Ignition Times for Solids with Radiation Absorption In-Depth by Simple Asymptotic Solutions. Fire Mater. 2012, 36, 41–47. [Google Scholar] [CrossRef]
- Gong, J.; Li, Y.; Chen, Y.; Li, J.; Wang, X.; Jiang, J.; Wang, Z.; Wang, J. Approximate Analytical Solutions for Transient Mass Flux and Ignition Time of Solid Combustibles Exposed to Time-Varying Heat Flux. Fuel 2018, 211, 676–687. [Google Scholar] [CrossRef]
- Gong, J.; Zhang, M.; Zhai, C. Composite Auto-Ignition Criterion for PMMA (Poly Methyl Methacrylate) Exposed to Linearly Declining Thermal Radiation. Appl. Therm. Eng. 2021, 195, 117156. [Google Scholar] [CrossRef]
- Gong, J.; Zhu, Z.; Zhang, M.; Zhai, C.; Wang, X. Piloted Ignition of Vertical Polymethyl Methacrylate (PMMA) Exposed to Power-Law Increasing Radiation. Appl. Therm. Eng. 2022, 217, 118996. [Google Scholar] [CrossRef]
- Zhai, C.; Zhang, S.; Yao, S.; Zhan, Q.; Zhang, S.; Wang, Y. Analytical Study on Ignition Time of PMMA Exposed to Time-Decreasing Thermal Radiation Using Critical Mass Flux. Sci. Rep. 2019, 9, 11958. [Google Scholar] [CrossRef] [PubMed]
- Lai, D.; Gong, J.; Zhou, X.; Ju, X.; Zheng, Y.; Yang, L.; Peng, F. Pyrolysis and Piloted Ignition of Thermally Thick PMMA Exposed to Constant Thermal Radiation in Cross Forced Airflow. J. Anal. Appl. Pyrolysis 2021, 155, 105042. [Google Scholar] [CrossRef]
- Alinejad, F.; Bordbar, H.; Hostikka, S. On the Importance and Modeling of In-Depth Spectral Radiation Absorption in the Pyrolysis of Black PMMA. Fire Saf. J. 2023, 135, 103706. [Google Scholar] [CrossRef]
- Linteris, G.; Zammarano, M.; Wilthan, B.; Hanssen, L. Absorption and Reflection of Infrared Radiation by Polymers in Fire-like Environments. Fire Mater. 2012, 36, 537–553. [Google Scholar] [CrossRef]
- Boulet, P.; Gérardin, J.; Acem, Z.; Parent, G.; Collin, A.; Pizzo, Y.; Porterie, B. Optical and Radiative Properties of Clear PMMA Samples Exposed to a Radiant Heat Flux. Int. J. Therm. Sci. 2014, 82, 1–8. [Google Scholar] [CrossRef]
- Bal, N.; Raynard, J.; Rein, G.; Torero, J.L.; Försth, M.; Boulet, P.; Parent, G.; Acem, Z.; Linteris, G. Experimental Study of Radiative Heat Transfer in a Translucent Fuel Sample Exposed to Different Spectral Sources. Int. J. Heat. Mass. Transf. 2013, 61, 742–748. [Google Scholar] [CrossRef]
- Boulet, P.; Parent, G.; Acem, Z.; Collin, A.; Försth, M.; Bal, N.; Rein, G.; Torero, J. Radiation Emission from a Heating Coil or a Halogen Lamp on a Semitransparent Sample. Int. J. Therm. Sci. 2014, 77, 223–232. [Google Scholar] [CrossRef]
- Mindykowski, P.; Pizzo, Y.; Rigollet, L.; Lallemand, C.; Kaiss, A.; Boulet, P.; Porterie, B. Heat Transfer Components at the Surface of Burning Thick PMMA Slabs. J. Phys. Conf. Ser. 2012, 395, 012009. [Google Scholar] [CrossRef]
- Kashiwagi, T.; Ohlemiller, T.J. A Study of Oxygen Effects on Nonflaming Transient Gasification of PMMA and PE during Thermal Irradiation. In Proceedings of the Nineteenth Symposium (International) on Combustion/the Combustion Institute, Haifa, Israel, 8–13 August 1982; pp. 815–823. [Google Scholar]
- Wichman, I.S. A Model Describing the Steady-State Gasification of Bubble-Forming Thermoplastics in Response to an Incident Heat Flux. Combust. Flame 1986, 63, 217–229. [Google Scholar] [CrossRef]
- Olson, S.L.; T’ien, J.S. Near-Surface Vapour Bubble Layers in Buoyant Low Stretch Burning of Polymethylmethacrylate. Fire Mater. 1999, 23, 227–237. [Google Scholar] [CrossRef]
- Butler, K.M. A Numerical Model for Combustion of Bubbling Thermoplastic Materials in Microgravity; NIST Interagency/Internal Report, NISTIR 6894; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2002. [Google Scholar]
- Oztekin, E.S.; Crowley, S.B.; Lyon, R.E.; Stoliarov, S.I.; Patel, P.; Hull, T.R. Sources of Variability in Fire Test Data: A Case Study on Poly(Aryl Ether Ether Ketone) (PEEK). Combust. Flame 2012, 159, 1720–1731. [Google Scholar] [CrossRef]
- Safronava, N.; Lyon, R.E.; Crowley, S.; Stoliarov, S.I. Effect of Moisture on Ignition Time of Polymers. Fire Technol. 2015, 51, 1093–1112. [Google Scholar] [CrossRef]
- Fina, A.; Feng, J.; Cuttica, F. In-Depth Radiative Heat Transmittance through Polypropylene/Nanoclay Composites. Polym. Degrad. Stab. 2013, 98, 1030–1035. [Google Scholar] [CrossRef]
- Hossain, S.; Wichman, I.; Miller, F.; Olson, S. Experimental Study of Molten Bubble Layer Growth and Bubble Size Distribution in Post-Flame-Spread PMMA Samples. Fire Mater. 2023, 47, 681–692. [Google Scholar] [CrossRef]
- Vincent, C.; Sabatini, F.; Aprin, L.; Heymes, F.; Longuet, C.; Rambaud, G.; Dusserre, G.; Ferry, L. Multi-Scale Experiments of Household Materials Burning. Chem. Eng. Trans. 2015, 43, 2419–2424. [Google Scholar] [CrossRef]
- Boulet, P.; Parent, G.; Acem, Z.; Rogaume, T.; Fateh, T.; Zaida, J.; Richard, F. Characterization of the Radiative Exchanges When Using a Cone Calorimeter for the Study of the Plywood Pyrolysis. Fire Saf. J. 2012, 51, 53–60. [Google Scholar] [CrossRef]
- ISO 5660-1; Reaction-to-Fire Tests—Heat Release, Smoke Production and Mass Loss Rate—Part 1: Heat Release Rate (Cone Calorimeter Method) and Smoke Production Rate (Dynamic Measurement). International Organisation for Standardisation: Geneva, Switzerland, 2015. Available online: https://www.iso.org/standard/57957.html (accessed on 27 March 2024).
- Huggett, C. Estimation of Rate of Heat Release by Means of Oxygen Consumption Measurements. Fire Mater. 1980, 4, 61–65. [Google Scholar] [CrossRef]
- Merzkirch, W. Flow Visualizetion, 2nd ed.; Academic Press: Cambridge, MA, USA, 1987; ISBN 0-12-491351-2. [Google Scholar]
- Lyon, R.; Janssens, M. Polymer Flammability; NTIS: Springfield, VA, USA, 2005. [Google Scholar]
- Mark, J.E. Physical Properties of Polymers Handbook, 2nd ed.; Springer: New York, NY, USA, 2006. [Google Scholar]
- Pizzo, Y.; Lallemand, C.; Kacem, A.; Kaiss, A.; Gerardin, J.; Acem, Z.; Boulet, P.; Porterie, B. Steady and Transient Pyrolysis of Thick Clear PMMA Slabs. Combust. Flame 2015, 162, 226–236. [Google Scholar] [CrossRef]
- Trotignon, J.P.; Verdu, J.; Piperaud, M.; Dobraczynski, A. Précis de “Matières Plastiques: Structures-Propriétés, Mise En Oeuvre, Normalisation”, 5th ed.; AFNOR-NATHAN: Paris, France, 1994; ISBN 2-09-176572. [Google Scholar]
- Vovelle, C.; Delfau, J.-L. Combustion des plastiques. Techniques de l’Ingénieur. 1997, AM AM3170 v1. Available online: https://www.techniques-ingenieur.fr/base-documentaire/materiaux-th11/proprietes-generales-des-plastiques-42152210/combustion-des-plastiques-am3170/ (accessed on 27 March 2024).
- Linteris, G.T. Numerical Simulations of Polymer Pyrolysis Rate: Effect of Property Variations. Fire Mater. 2011, 35, 463–480. [Google Scholar] [CrossRef]
- Judd, R.J.; Simjanov, A. Bubble Nucleation in Response to a Step Change in Heat Flux. Int. J. Heat. Mass. Transf. 2004, 47, 2149–2159. [Google Scholar] [CrossRef]
- Zeng, W.R.; Li, S.F.; Chow, W.K. Preliminary Studies on Burning Behavior of Polymethylmethacrylate (PMMA). J. Fire Sci. 2002, 20, 297–317. [Google Scholar] [CrossRef]
- Pickering, S. A Mechanism for the Resuspension of Particles from Burning Plexiglas. J. Aerosol Sci. 1986, 17, 602–607. [Google Scholar] [CrossRef]
- Cordova, J.L.; Walther, D.C.; Torero, J.L.; Fernandez-Pello, A.C. Oxidizer Flow Effects on the Flammability of Solid Combustibles. Combust. Sci. Technol. 2001, 164, 253–278. [Google Scholar] [CrossRef]
- Daikoku, M.; Venkatesh, S.; Saito, K. The Use of Cellulose Sample for Material’s Flammability and Pyrolysis Tests. J. Fire Sci. 1994, 12, 424–441. [Google Scholar] [CrossRef]
- Försth, M.; Roos, A. Absorptivity and Its Dependence on Heat Source Temperature and Degree of Thermal Breakdown. Fire Mater. 2011, 35, 285–301. [Google Scholar] [CrossRef]
- Dombrovsky, L.; Randrianalisoa, J.; Baillis, D.; Pilon, L. Use of Mie Theory to Analyze Experimental Data to Identify Infrared Properties of Fused Quartzcontaining Bubbles. Appl. Opt. 2005, 44, 7021–7031. [Google Scholar] [CrossRef]
Parameters | Experimental Values * (Thickness = 4 mm) | Theoretical Values |
---|---|---|
Density (kg·m−3) | 1190 | 1170–1200 |
Thermal conductivity (W·m−1·K−1) | 0.20 | 0.167–0.251 |
Specific heat (J·kg−1·K−1) | 1400 | 1400–1520 |
Emissivity | - | 0.86 |
Thermal diffusivity (m2·s−1) | 1.2 × 10−7 | 1.1–1.4 × 10−7 |
Ignition temperature (°C) | 320 | 317 ± 10 |
Source | Sample Thickness (mm) | Heat Flux (kW/m2) | (s) | (m−1) | (m−1) |
---|---|---|---|---|---|
Radiant panel | 2 | 50 | 52 | 576 | 142 |
4 | 50 | 75 | 360 | 35 | |
10 | 50 | 85 | 310 | 19 | |
20 | 50 | 92 | 283 | 10 | |
4 | 20 | 208 | 2010 | ||
4 | 35 | 89 | 662 | ||
4 | 60 | 52 | 398 | ||
4 | 75 | 51 | 280 | ||
Cone calorimeter | 4 | 10 | 460 | >5000 | |
4 | 20 | 125 | >5000 | ||
4 | 35 | 51 | 2060 | ||
4 | 50 | 25 | 2040 | ||
4 | 75 | 17 | 1140 |
Radiative Source | Epiradiator | Radiant Panel | ||
---|---|---|---|---|
Thickness (mm) | 2 | 10 | 10 | 2 |
Heat Flux (kW/m2) | 27 ± 2 | 27 ± 2 | 31 ± 2 | 27 ± 2 |
Onset time of bubbling (s) | 55 ± 2 | 220 ± 2 | 65 ± 2 | 100 ± 2 |
Ignition time (s) | 90 ± 2 | 250 ± 2 | 86 ± 2 | 120 ± 2 |
Temperature of front face at (°C) | 320 ± 5 | 330 ± 5 | 335 ± 5 | 218 ± 5 |
Temperature of rear face at (°C) | 269 ± 5 | 45 ± 5 | 46 ± 5 | 198 ± 5 |
Temperature of front face at (°C) | 287 ± 5 | 325 ± 5 | 314 ± 5 | 202 ± 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vincent, C.; Longuet, C.; Aprin, L.; Slangen, P.; Rambaud, G.; Ferry, L. Effect of Bubbling on Ignition of PMMA Slab: Change in Thermo-Physical and Thermo-Radiative Properties. Fire 2024, 7, 117. https://doi.org/10.3390/fire7040117
Vincent C, Longuet C, Aprin L, Slangen P, Rambaud G, Ferry L. Effect of Bubbling on Ignition of PMMA Slab: Change in Thermo-Physical and Thermo-Radiative Properties. Fire. 2024; 7(4):117. https://doi.org/10.3390/fire7040117
Chicago/Turabian StyleVincent, Chloë, Claire Longuet, Laurent Aprin, Pierre Slangen, Guillaume Rambaud, and Laurent Ferry. 2024. "Effect of Bubbling on Ignition of PMMA Slab: Change in Thermo-Physical and Thermo-Radiative Properties" Fire 7, no. 4: 117. https://doi.org/10.3390/fire7040117