Composite Material of PDMS with Interchangeable Transmittance: Study of Optical, Mechanical Properties and Wettability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Manufacturing
2.2. Tensile Test
2.3. Spectrophotometry Test
2.4. Wettability Test
2.5. Hardness Test
3. Results and Discussions
3.1. Tensile Test
3.2. Spectrophotometry Test
3.3. Wettability Test
3.4. Hardness Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Salazar-Hernández, C.; Salazar-Hernández, M.; Carrera-Cerritos, R.; Mendoza-Miranda, J.M.; Elorza-Rodríguez, E.; Miranda-Avilés, R.; Mocada-Sánchez, C.D. Anticorrosive properties of PDMS-Silica coatings: Effect of methyl, phenyl and amino groups. Prog. Org. Coat. 2019, 136. [Google Scholar] [CrossRef]
- Adiguzel, Z.; Sagnic, S.A.; Aroguz, A.Z. Preparation and characterization of polymers based on PDMS and PEG-DMA as potential scaffold for cell growth. Mater. Sci. Eng. C 2017, 78, 942–948. [Google Scholar] [CrossRef] [PubMed]
- Riehle, N.; Thude, S.; Götz, T.; Kandelbauer, A.; Thanos, S.; Tovar, G.E.M.; Lorenz, G. Influence of PDMS molecular weight on transparency and mechanical properties of soft polysiloxane-urea-elastomers for intraocular lens application. Eur. Polym. J. 2018, 101, 190–201. [Google Scholar] [CrossRef]
- Victor, A.; Ribeiro, J.; Araújo, F. Study of PDMS characterization and its applications in biomedicine: A review. J. Mech. Eng. Biomech. 2019, 4, 1–9. [Google Scholar] [CrossRef]
- Rodrigues, R.O.; Sousa, P.C.; Gaspar, J.; Bañobre-López, M.; Lima, R.; Minas, G. Organ-on-a-Chip: A Preclinical Microfluidic Platform for the Progress of Nanomedicine. Small 2020, 16, 2003517. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, V.; Maia, I.; Souza, A.; Ribeiro, J.; Costa, P.; Puga, H.; Teixeira, S.; Lima, R.A. In vitro Biomodels in Stenotic Arteries to Perform Blood Analogues Flow Visualizations and Measurements: A Review. Open Biomed. Eng. J. 2021, 14, 87–102. [Google Scholar] [CrossRef]
- Souza, A.; Souza, M.S.; Pinho, D.; Agujetas, R.; Ferrera, C.; Lima, R.; Puga, H.; Ribeiro, J. 3D manufacturing of intracranial aneurysm biomodels for flow visualizations: Low cost fabrication processes. Mech. Res. Commun. 2020, 107. [Google Scholar] [CrossRef]
- Yun, C.M.; Akiyama, E.; Yamanobe, T.; Uehara, H.; Nagase, Y. Characterizations of PDMS-graft copolyimide membrane and the permselectivity of gases and aqueous organic mixtures. Polymer 2016, 103, 214–223. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, E.; Fan, J.; Chen, B.; Hu, X.; He, Y.; He, C. Superhydrophobic PDMS/wax coated polyester textiles with self-healing ability via inlaying method. Prog. Org. Coat. 2019, 132, 100–107. [Google Scholar] [CrossRef]
- Pan, Z.; Guan, Y.; Liu, Y.; Cheng, F. Facile fabrication of hydrophobic and underwater superoleophilic elastic and mechanical robust graphene/PDMS sponge for oil/water separation. Sep. Purif. Technol. 2021, 261, 118273. [Google Scholar] [CrossRef]
- Kacik, D.; Martincek, I. Toluene optical fibre sensor based on air microcavity in PDMS. Opt. Fiber Technol. 2017, 34, 70–73. [Google Scholar] [CrossRef]
- Yi, D.; Huo, Z.; Geng, Y.; Li, X.; Hong, X. PDMS-coated no-core fiber interferometer with enhanced sensitivity for temperature monitoring applications. Opt. Fiber Technol. 2020, 57, 102185. [Google Scholar] [CrossRef]
- Lee, W.S.; Yeo, K.S.; Andriyana, A.; Shee, Y.G.; Mahamd Adikan, F.R. Effect of cyclic compression and curing agent concentration on the stabilization of mechanical properties of PDMS elastomer. Mater. Des. 2016, 96, 470–475. [Google Scholar] [CrossRef]
- Ressel, J.; Seewald, O.; Bremser, W.; Reicher, H.P.; Strube, O.I. Self-lubricating coatings via PDMS micro-gel dispersions. Prog. Org. Coat. 2020, 146, 105705. [Google Scholar] [CrossRef]
- Gouyon, J.; d’Orlyé, F.; Griveau, S.; Bedioui, F.; Varenne, A. Characterization of home-made graphite/PDMS microband electrodes for amperometric detection in an original reusable glass-NOA®-PDMS electrophoretic microdevice. Electrochim. Acta 2020, 329. [Google Scholar] [CrossRef]
- Carneiro, J.; Lima, R.; Campos, J.; Miranda, J. Microparticle blood analogue suspension matching blood rheology. Soft Matter 2021. [Google Scholar] [CrossRef] [PubMed]
- Pinho, D.; Muñoz-Sánchez, B.N.; Anes, C.F.; Vega, E.J.; Lima, R. Flexible PDMS microparticles to mimic RBCs in blood particulate analogue fluids. Mech. Res. Commun. 2019, 100, 18–20. [Google Scholar] [CrossRef] [Green Version]
- Muñoz-Sánchez, B.N.; Silva, S.F.; Pinho, D.; Vega, E.J.; Lima, R. Generation of micro-sized PDMS particles by a flow focusing technique for biomicrofluidics applications. Biomicrofluidics 2016, 10, 014122. [Google Scholar] [CrossRef] [Green Version]
- Maram, S.K.; Barron, B.; Leung, J.C.K.; Pallapa, M.; Rezai, P. Fabrication and thermoresistive behavior characterization of three-dimensional silver-polydimethylsiloxane (Ag-PDMS) microbridges in a mini-channel. Sens. Actuators A Phys. 2018, 277, 43–51. [Google Scholar] [CrossRef]
- Akther, F.; Yakob, S.B.; Nguyen, N.T.; Ta, H.T. Surface Modification Techniques for Endothelial Cell Seeding in PDMS Microfluidic Devices. Biosensors 2020, 10, 182. [Google Scholar] [CrossRef]
- Catarino, S.O.; Rodrigues, R.O.; Pinho, D.; Miranda, J.M.; Minas, G.; Lima, R. Blood cells separation and sorting techniques of passive microfluidic devices: From fabrication to applications. Micromachines 2019, 10, 593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, R.O.; Bañobre-López, M.; Gallo, J.; Tavares, P.B.; Silva, A.M.T.; Lima, R.; Gomes, H.T. Haemocompatibility of iron oxide nanoparticles synthesized for theranostic applications: A high-sensitivity microfluidic tool. J. Nanoparticle Res. 2016, 18, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Boas, L.V.; Faustino, V.; Lima, R.; Miranda, J.M.; Minas, G.; Fernandes, C.S.V.; Catarino, S.O. Assessment of the deformability and velocity of healthy and artificially impaired red blood cells in narrow polydimethylsiloxane (PDMS) microchannels. Micromachines 2018, 9, 384. [Google Scholar] [CrossRef] [Green Version]
- Johnston, I.D.; McCluskey, D.K.; Tan, C.K.L.; Tracey, M.C. Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering. J. Micromech. Microeng. 2014, 24. [Google Scholar] [CrossRef]
- Park, J.S.; Cabosky, R.; Ye, Z.; Kim, I. (Isaac) Investigating the mechanical and optical properties of thin PDMS film by flat-punched indentation. Opt. Mater. 2018, 85, 153–161. [Google Scholar] [CrossRef]
- Montazerian, H.; Mohamed, M.G.A.; Montazeri, M.M.; Kheiri, S.; Milani, A.S.; Kim, K.; Hoorfar, M. Permeability and mechanical properties of gradient porous PDMS scaffolds fabricated by 3D-printed sacrificial templates designed with minimal surfaces. Acta Biomater. 2019, 96, 149–160. [Google Scholar] [CrossRef]
- Rao, H.; Zhang, Z.; Liu, F. Enhanced mechanical properties and blood compatibility of PDMS/liquid crystal cross-linked membrane materials. J. Mech. Behav. Biomed. Mater. 2013, 20, 347–353. [Google Scholar] [CrossRef]
- Souza, A.; Marques, E.; Balsa, C.; Ribeiro, J. Characterization of shear strain on PDMS: Numerical and experimental approaches. Appl. Sci. 2020, 10, 3322. [Google Scholar] [CrossRef]
- Shi, Y.; Hu, M.; Xing, Y.; Li, Y. Temperature-dependent thermal and mechanical properties of flexible functional PDMS/paraffin composites. Mater. Des. 2020, 185, 108219. [Google Scholar] [CrossRef]
- An, A.K.; Guo, J.; Lee, E.J.; Jeong, S.; Zhao, Y.; Wang, Z.; Leiknes, T.O. PDMS/PVDF hybrid electrospun membrane with superhydrophobic property and drop impact dynamics for dyeing wastewater treatment using membrane distillation. J. Memb. Sci. 2017, 525, 57–67. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Lei, S.; Ou, J.; Li, W. Effect of PDMS on the waterproofing performance and corrosion resistance of cement mortar. Appl. Surf. Sci. 2020, 507, 145016. [Google Scholar] [CrossRef]
- Giri, R.; Naskar, K.; Nando, G.B. Effect of electron beam irradiation on dynamic mechanical, thermal and morphological properties of LLDPE and PDMS rubber blends. Radiat. Phys. Chem. 2012, 81, 1930–1942. [Google Scholar] [CrossRef]
- Dalla Monta, A.; Razan, F.; Le Cam, J.B.; Chagnon, G. Using thickness-shear mode quartz resonator for characterizing the viscoelastic properties of PDMS during cross-linking, from the liquid to the solid state and at different temperatures. Sens. Actuators A Phys. 2018, 280, 107–113. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Huang, J.; Chen, Z.; Chen, G.; Zhang, K.Q.; Al-Deyab, S.S.; Lai, Y. Robust translucent superhydrophobic PDMS/PMMA film by facile one-step spray for self-cleaning and efficient emulsion separation. Chem. Eng. J. 2017, 330, 26–35. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, D.H.; Han, S.W.; Kim, B.R.; Park, E.J.; Jeong, M.G.; Kim, J.H.; Kim, Y.D. Fabrication of superhydrophobic fibre and its application to selective oil spill removal. Chem. Eng. J. 2016, 289, 1–6. [Google Scholar] [CrossRef]
- He, X.; Wang, T.; Li, Y.; Chen, J.; Li, J. Fabrication and characterization of micro-patterned PDMS composite membranes for enhanced ethanol recovery. J. Memb. Sci. 2018, 563, 447–459. [Google Scholar] [CrossRef]
- Wang, X.; Li, N.; Xu, D.; Yang, X.; Zhu, Q.; Xiao, D.; Lu, N. Superhydrophobic candle soot/PDMS substrate for one-step enrichment and desalting of peptides in MALDI MS analysis. Talanta 2018, 190, 23–29. [Google Scholar] [CrossRef]
- Syafiq, A.; Vengadaesvaran, B.; Rahim, N.A.; Pandey, A.K.; Bushroa, A.R.; Ramesh, K.; Ramesh, S. Transparent self-cleaning coating of modified polydimethylsiloxane (PDMS) for real outdoor application. Prog. Org. Coat. 2019, 131, 232–239. [Google Scholar] [CrossRef]
- Zhang, W.; Jiang, S.; Lv, D. Fabrication and characterization of a PDMS modified polyurethane/Al composite coating with super-hydrophobicity and low infrared emissivity. Prog. Org. Coat. 2020, 143, 105622. [Google Scholar] [CrossRef]
- Hong, S.; Wang, R.; Huang, X.; Liu, H. Facile one-step fabrication of PHC/PDMS anti-icing coatings with mechanical properties and good durability. Prog. Org. Coat. 2019, 135, 263–269. [Google Scholar] [CrossRef]
- Gao, S.; Dong, X.; Huang, J.; Li, S.; Li, Y.; Chen, Z.; Lai, Y. Rational construction of highly transparent superhydrophobic coatings based on a non-particle, fluorine-free and water-rich system for versatile oil-water separation. Chem. Eng. J. 2018, 333, 621–629. [Google Scholar] [CrossRef]
- Li, D.; Yao, J.; Sun, H.; Liu, B.; Li, D.; van Agtmaal, S.; Feng, C. Preparation and characterization of SiO2/PDMS/PVDF composite membrane for phenols recovery from coal gasification wastewater in pervaporation. Chem. Eng. Res. Des. 2018, 132, 424–435. [Google Scholar] [CrossRef]
- Chen, D.; Chen, F.; Hu, X.; Zhang, H.; Yin, X.; Zhou, Y. Thermal stability, mechanical and optical properties of novel addition cured PDMS composites with nano-silica sol and MQ silicone resin. Compos. Sci. Technol. 2015, 117, 307–314. [Google Scholar] [CrossRef]
- Pakzad, H.; Liravi, M.; Moosavi, A.; Nouri-Borujerdi, A.; Najafkhani, H. Fabrication of durable superhydrophobic surfaces using PDMS and beeswax for drag reduction of internal turbulent flow. Appl. Surf. Sci. 2020, 513, 145754. [Google Scholar] [CrossRef]
- Santiago-Alvarado, A.; Cruz-Felix, A.; Iturbide, F.; Licona-Morán, B. Physical-chemical properties of PDMS samples used in tunable lenses. Int. J. Eng. Sci. Innov. Technol. 2014, 3, 563–571. [Google Scholar]
- Cruz-Félix, A.S.; Santiago-Alvarado, A.; Márquez-García, J.; González-García, J. PDMS samples characterization with variations of synthesis parameters for tunable optics applications. Heliyon 2019, 5, e03064. [Google Scholar] [CrossRef] [Green Version]
- Damodara, S.; George, D.; Sen, A.K. Single step fabrication and characterization of PDMS micro lens and its use in optocapillary flow manipulation. Sens. Actuators B Chem. 2016, 227, 383–392. [Google Scholar] [CrossRef]
- Park, J.Y.; Song, H.; Kim, T.; Suk, J.W.; Kang, T.J.; Jung, D.; Kim, Y.H. PDMS-paraffin/graphene laminated films with electrothermally switchable haze. Carbon N. Y. 2016, 96, 805–811. [Google Scholar] [CrossRef]
- Arumugam, S.; Kandasamy, J.; Md Shah, A.U.; Hameed Sultan, M.T.; Safri, S.N.A.; Abdul Majid, M.S.; Basri, A.A.; Mustapha, F. Investigations on the Mechanical Properties of Glass Fiber/Sisal Fiber/Chitosan Reinforced Hybrid Polymer Sandwich Composite Scaffolds for Bone Fracture Fixation Applications. Polymers 2020, 12, 1501. [Google Scholar] [CrossRef]
- Owuor, P.S.; Chaudhary, V.; Woellner, C.F.; Sharma, V.; Ramanujan, R.V.; Stender, A.S.; Soto, M.; Ozden, S.; Barrera, E.V.; Vajtai, R.; et al. High stiffness polymer composite with tunable transparency. Mater. Today 2018, 21, 475–482. [Google Scholar] [CrossRef]
- ASTM. ASTM D412-16: Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers; ASTM: West Conshohocken, PA, USA, 2009; pp. 1–14. [Google Scholar]
- ASTM. ASTM D2240: Standard Test Method for Rubber Property-Durometer Hardness 2015; ASTM: West Conshohocken, PA, USA, 2015. [Google Scholar]
- Bucio, A.; Moreno-Tovar, R.; Bucio, L.; Espinosa-Dávila, J.; Anguebes-Franceschi, F. Characterization of Beeswax, Candelilla Wax and Paraffin Wax for Coating Cheeses. Coatings 2021, 11, 261. [Google Scholar] [CrossRef]
- Zhang, Y.; Bi, J.; Wang, S.; Cao, Q.; Li, Y.; Zhou, J.; Zhu, B.W. Functional food packaging for reducing residual liquid food: Thermo-resistant edible super-hydrophobic coating from coffee and beeswax. J. Colloid Interface Sci. 2019, 533, 742–749. [Google Scholar] [CrossRef] [PubMed]
- Dow Chemical Company Technical Data Sheet: Sylgard 184; Sigma-Aldrich Co.: St. Louis, MO, USA, 2017.
- Elnahas, H.H.; Abdou, S.M.; El-Zahed, H.; Abdeldaym, A. Structural, morphological and mechanical properties of gamma irradiated low density polyethylene/paraffin wax blends. Radiat. Phys. Chem. 2018, 151, 217–224. [Google Scholar] [CrossRef]
- Pinho, D.; Bento, D.; Ribeiro, J.; Lima, R.; Vaz, M. An in vitro experimental evaluation of the displacement field in an intracranial aneurysm model. Mech. Mach. Sci. 2015, 24, 261–268. [Google Scholar]
TT_0% | TT_1%B | TT_1%P | |
---|---|---|---|
σmáx. | 5.669 ± 0.435 | 2.852 ± 1.016 | 1.031 ± 0.158 |
εmáx. | 1.633 ± 0.245 | 1.014 ± 0.248 | 1.033 ± 0.256 |
Contact Angle | |||
---|---|---|---|
Measurement Point | Pure PDMS | Paraffin | Beeswax |
WT_0% | WT_1%P | WT_1%B | |
1 | 120.8° | 135.8° | 135.0° |
2 | 116.9° | 145.3° | 120.6° |
3 | 122.3° | 143.6° | 133.6° |
4 | 120.4° | 141.4° | 127.3° |
5 | 115.8° | 143.5° | 130.2° |
Arithmetic Mean | 119.2° | 141.9° | 129.3° |
Standard Deviation | 2.8° | 3.7° | 5.7° |
σmáx. [MPa] | εmáx. [mm/mm] | Hardness [Shore A] | Transmittance (Visible Region) [%] | Contact Angle [°] | |
---|---|---|---|---|---|
0% | 5.95 ± 0.44 | 1.61 ± 0.25 | 41.70 ± 0.95 | 74.37–75.45 | 119.24 ± 2.76 |
1%P | 2.60 ± 1.02 | 0.97 ± 0.25 | 33.20 ± 1.03 | 42.30–52.05 (25 °C) | 141.92 ± 3.69 |
59.51–72.44 (70 °C) | |||||
1%B | 1.13 ± 0.16 | 0.84 ± 0.26 | 28.00 ± 1.05 | 49.83–60.07 (25 °C) | 129.34 ± 5.73 |
67.63–71.25 (70 °C) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sales, F.; Souza, A.; Ariati, R.; Noronha, V.; Giovanetti, E.; Lima, R.; Ribeiro, J. Composite Material of PDMS with Interchangeable Transmittance: Study of Optical, Mechanical Properties and Wettability. J. Compos. Sci. 2021, 5, 110. https://doi.org/10.3390/jcs5040110
Sales F, Souza A, Ariati R, Noronha V, Giovanetti E, Lima R, Ribeiro J. Composite Material of PDMS with Interchangeable Transmittance: Study of Optical, Mechanical Properties and Wettability. Journal of Composites Science. 2021; 5(4):110. https://doi.org/10.3390/jcs5040110
Chicago/Turabian StyleSales, Flaminio, Andrews Souza, Ronaldo Ariati, Verônica Noronha, Elder Giovanetti, Rui Lima, and João Ribeiro. 2021. "Composite Material of PDMS with Interchangeable Transmittance: Study of Optical, Mechanical Properties and Wettability" Journal of Composites Science 5, no. 4: 110. https://doi.org/10.3390/jcs5040110