The Influence of Pressure-Induced-Flow Processing on the Morphology, Thermal and Mechanical Properties of Polypropylene Blends
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Blend Material Preparation
2.3. Pressure-Induced-Flow Process
2.4. Scanning Electron Microscope (SEM)
2.5. X-Ray Diffraction (XRD)
2.6. Differential Scanning Calorimetry (DSC)
2.7. Mechanical Test
3. Results and Discussion
3.1. The Influence of PIF Process on the Microstructure of PP Blends
3.2. The Effect of PIF Process on the Thermal Properties of PP Blends
3.3. The Effect of PIF Process on the Mechanical Properties of PP Blends
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luo, G.; Li, W.; Liang, W.; Liu, G.; Ma, Y.; Niu, Y.; Li, G. Coupling effects of glass fiber treatment and matrix modification on the interfacial microstructures and the enhanced mechanical properties of glass fiber/polypropylene composites. Compos. Part B Eng. 2017, 111, 190–199. [Google Scholar] [CrossRef] [Green Version]
- Mojtabaei, A.; Otadi, M.; Goodarzi, V.; Khonakdar, H.A.; Jafari, S.H.; Reuter, U.; Wagenknecht, U. Influence of fullerene-like tungsten disulfide (IF-WS 2) nanoparticles on thermal and dynamic mechanical properties of PP/EVA blends: Correlation with microstructure. Compos. Part B Eng. 2017, 111, 74–82. [Google Scholar] [CrossRef]
- Diop, M.F.; Torkelson, J.M. Novel synthesis of branched polypropylene via solid-state shear pulverization. Polymer 2015, 60, 77–87. [Google Scholar] [CrossRef]
- Al-Itry, R.; Lamnawar, K.; Maazouz, A. Rheological, morphological, and interfacial properties of compatibilized PLA/PBAT blends. Rheol. Acta 2014, 53, 501–517. [Google Scholar] [CrossRef]
- Mouffok, S.; Kaci, M. Artificial weathering effect on the structure and properties of polypropylene/polyamide-6 blends compatibilized with PP-g-MA. J. Appl. Polym. Sci. 2015, 132. [Google Scholar] [CrossRef]
- Li, H.; Zhang, X.-M.; Zhu, S.-Y.; Chen, W.-X.; Feng, L.-F. Preparation of polypropylene and polystyrene with NCO and NH2 functional groups and their applications in polypropylene/polystyrene blends. Polym. Eng. Sci. 2015, 55, 614–623. [Google Scholar] [CrossRef]
- Kuang, T.; Chang, L.; Fu, D.; Yang, J.; Zhong, M.; Chen, F.; Peng, X. Improved crystallizability and processability of ultra high molecular weight polyethylene modified by poly(amido amine) dendrimers. Polym. Eng. Sci. 2017, 57, 153–160. [Google Scholar] [CrossRef]
- Chen, M.; Tang, M.; Ma, Y.; Chen, X.; Qin, J.; He, W.; Zhang, Z. Influence of polyamide 6 as a charring agent on the flame retardancy, thermal, and mechanical properties of polypropylene composites. Polym. Eng. Sci. 2015, 55, 1355–1360. [Google Scholar] [CrossRef]
- Youssef, A.H.; Madhuranthakam, C.M.R.; Elkamel, A.; Mittal, V. Optimizing mechanical properties of injection-molded long fiber-reinforced polypropylene. J. Thermoplast. Compos. Mater. 2014, 28, 849–862. [Google Scholar] [CrossRef]
- Rafiee, F.; Otadi, M.; Goodarzi, V.; Khonakdar, H.A.; Jafari, S.H.; Mardani, E.; Reuter, U. Thermal and dynamic mechanical properties of PP/EVA nanocomposites containing organo-modified layered double hydroxides. Compos. Part B Eng. 2016, 103, 122–130. [Google Scholar] [CrossRef]
- Zhou, T.; Tsui, G.C.; Liang, J.; Zou, S.; Tang, C.; Mišković-Stanković, V. Thermal properties and thermal stability of PP/MWCNT composites. Compos. Part B Eng. 2016, 90, 107–114. [Google Scholar] [CrossRef]
- Cesano, F.; Zaccone, M.; Armentano, I.; Cravanzola, S.; Muscuso, L.; Torre, L.; Kenny, J.M.; Monti, M.; Scarano, D. Relationship between morphology and electrical properties in PP/MWCNT composites: Processing-induced anisotropic percolation threshold. Mater. Chem. Phys. 2016, 180, 284–290. [Google Scholar] [CrossRef]
- Foster, R.J.; Hine, P.J.; Ward, I.M. The effect of draw ratio on the mechanical properties and crystalline structure of single polymer polypropylene composites. Polymer 2016, 91, 156–161. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Lv, Y.; Sheng, J.; Tian, H.; Ning, N.; Zhang, L.; Wu, H.; Tian, M. Morphology development of POE/PP thermoplastic vulcanizates (TPVs) during dynamic vulcanization. Eur. Polym. J. 2017, 93, 590–601. [Google Scholar] [CrossRef]
- Li, X.; Wu, H.; Wang, Y.; Bai, H.; Liu, L.; Huang, T. Study on the β to α transformation of PP/POE blends with β-phase nucleating agent during the tensile deformation process. Mater. Sci. Eng. A 2010, 527, 531–538. [Google Scholar] [CrossRef]
- Boyacioglu, S.; Kodal, M.; Ozkoc, G.; Boyacıoğlu, S. A comprehensive study on shape memory behavior of PEG plasticized PLA/TPU bio-blends. Eur. Polym. J. 2020, 122, 109372. [Google Scholar] [CrossRef]
- Zhang, X.; Li, T.-T.; Wang, Z.; Peng, H.-K.; Lou, C.-W.; Lin, J.-H. Facile fabrication and mass production of TPU/Silica/STF coated aramid fabric with excellent flexibility and quasi-static stab resistance for versatile protection. Prog. Org. Coat. 2021, 151, 106088. [Google Scholar] [CrossRef]
- Sathe, S.N.; Rao, G.S.S.; Rao, K.V.; Devi, S. The effect of composition on morphological, thermal, and mechanical properties of polypropylene/nylon-6/polypropylene-g-butyl acrylate blends. Polym. Eng. Sci. 1996, 36, 2443–2450. [Google Scholar] [CrossRef]
- Ide, F.; Hasegawa, A. Studies on polymer blend of nylon 6 and polypropylene or nylon 6 and polystyrene using the reaction of polymer. J. Appl. Polym. Sci. 1974, 18, 963–974. [Google Scholar] [CrossRef]
- Yap, S.P.; Alengaram, U.J.; Jumaat, M.Z. Enhancement of mechanical properties in polypropylene– and nylon–fibre reinforced oil palm shell concrete. Mater. Des. 2013, 49, 1034–1041. [Google Scholar] [CrossRef]
- Tedesco, A.; Barbosa, R.; Nachtigall, S.; Mauler, R. Comparative study of PP-MA and PP-GMA as compatibilizing agents on polypropylene/nylon 6 blends. Polym. Test. 2002, 21, 11–15. [Google Scholar] [CrossRef]
- Gonzalez-Leon, J.A.; Acar, M.H.; Ryu, S.W.; Ruzette, A.V.G.; Mayes, A.M. Low-temperature processing of ‘baroplastics’ by pressure-induced flow. Nature 2003, 426, 424–428. [Google Scholar] [CrossRef]
- Zhang, S.; Feng, X.; Zhu, S.; Huan, Q.; Han, K.; Ma, Y.; Yu, M. Novel toughening mechanism for polylactic acid (PLA)/starch blends with layer-like microstructure via pressure-induced flow (PIF) processing. Mater. Lett. 2013, 98, 238–241. [Google Scholar] [CrossRef]
- Huan, Q.; Zhu, S.; Ma, Y.; Zhang, J.; Zhang, S.; Feng, X.; Han, K.; Yu, M. Markedly improving mechanical properties for isotactic polypropylene with large-size spherulites by pressure-induced flow processing. Polymer 2013, 54, 1177–1183. [Google Scholar] [CrossRef]
- Zhang, S.; Feng, X.; Zhu, S.; Wang, S.; Gong, Y.; An, Q.; Guo, J.; Yu, M. Engineering oriented hierarchical lamellar structures in SBS/PS blends via a pressure-induced flow field. RSC Adv. 2016, 6, 21546–21554. [Google Scholar] [CrossRef]
- Zhu, S.; Han, K.; Zhang, S.; Jiang, Z.; Huan, Q.; Ma, Y.; Yu, M. Simultaneously Boosting Toughness and Tensile Strength for Polyamide 6/montmorillonite Nanocomposite by a Pressure-Induced Flow Field. J. Macromol. Sci. Part B 2014, 53, 1601–1608. [Google Scholar] [CrossRef]
- Palacios, J.K.; Sangroniz, A.; Eguiazabal, J.I.; Etxeberria, A.; Müller, A.J. Tailoring the properties of PP/PA6 nanostructured blends by the addition of nanosilica and compatibilizer agents. Eur. Polym. J. 2016, 85, 532–552. [Google Scholar] [CrossRef]
- Ou, B.; Chen, M.; Zhou, H. Non-Isothermal Crystallization and Melting Behaviors of PP/PA6/TiO 2 Nanocomposites. Polym. Technol. Eng. 2017, 56, 506–525. [Google Scholar] [CrossRef]
- Do, V.-T.; Nguyen-Tran, H.-D.; Chun, D.-M. Effect of polypropylene on the mechanical properties and water absorption of carbon-fiber-reinforced-polyamide-6/polypropylene composite. Compos. Struct. 2016, 150, 240–245. [Google Scholar] [CrossRef]
- Motamedi, P.; Bagheri, R. Modification of nanostructure and improvement of mechanical properties of polypropylene/polyamide 6/layered silicate ternary nanocomposites through variation of processing route. Compos. Part B Eng. 2016, 85, 207–215. [Google Scholar] [CrossRef]
- Gray, R.W.; Young, R.J. Improved “single-crystal” texture in high-density polyethylene. J. Mater. Sci. 1974, 9, 521–522. [Google Scholar] [CrossRef]
- Young, R.J.; Bowden, P.B.; Ritchie, J.M.; Rider, J.G. Deformation mechanisms in oriented high-density polyethylene. J. Mater. Sci. 1973, 8, 23–36. [Google Scholar] [CrossRef]
- Zhu, S.; Han, K.Q.; Ao, T.T.; Zhang, S.; Ma, Y.; Yu, M.H. Tough and strong polyamide 6,6 with oriented morphologies via pressure induced flow processing. Mater. Res. Innov. 2013, 17 (Suppl. 1), 176–181. [Google Scholar] [CrossRef]
- Zhang, S.; Zhu, S.; Feng, X.; Han, K.; Huan, Q.; Song, J.; Ma, Y.; Yu, M. Deformation and toughening mechanism for high impact polystyrene (HIPS) by pressure-induced-flow processing. RSC Adv. 2013, 3, 6879. [Google Scholar] [CrossRef]
- Kuang, T.; Chen, F.; Chang, L.; Zhao, Y.; Fu, D.; Gong, X.; Peng, X. Facile preparation of open-cellular porous poly (l-lactic acid) scaffold by supercritical carbon dioxide foaming for potential tissue engineering applications. Chem. Eng. J. 2017, 307, 1017–1025. [Google Scholar] [CrossRef]
- Kuang, T.; Chang, L.; Chen, F.; Sheng, Y.; Fu, D.; Peng, X. Facile preparation of lightweight high-strength biodegradable polymer/multi-walled carbon nanotubes nanocomposite foams for electromagnetic interference shielding. Carbon 2016, 105, 305–313. [Google Scholar] [CrossRef]
- Kuang, T.; Fu, D.; Chen, F.; Chang, L.; Peng, X.; Lee, L.J. Enhanced strength and foamability of high-density polyethylene prepared by pressure-induced flow and low-temperature crosslinking. RSC Adv. 2016, 6, 34422–34427. [Google Scholar] [CrossRef]
- Fu, D.; Kuang, T.; Chen, F.; Lee, L.J.; Peng, X. Fabrication of high strength PA6/PP blends with pressure-induced-flow processing. Mater. Chem. Phys. 2015, 164, 1–5. [Google Scholar] [CrossRef]
- Kuang, T.; Li, K.; Chen, B.; Peng, X. Poly (propylene carbonate)-based in situ nanofibrillar biocomposites with enhanced miscibility, dynamic mechanical properties, rheological behavior and extrusion foaming ability. Compos. Part B Eng. 2017, 123, 112–123. [Google Scholar] [CrossRef]
- Fu, D.; Chen, F.; Peng, X.; Kuang, T. Polyamide 6 modified polypropylene with remarkably enhanced mechanical performance, thermal properties, and foaming ability via pressure-induced-flow processing approach. Adv. Polym. Technol. 2018, 37, 2721–2729. [Google Scholar] [CrossRef] [Green Version]
Samples | PP Crystalline |
---|---|
PP/PA6 | α (110), (040), (130); β (301) |
PIF PP/PA6 | α (110), (130); β (300), (301) |
PP/POE | α (110), (040), (130); β (301) |
PIF PP/POE | α (110), (040), (130); β (301) |
PP/TPU | α (110), (040), (130); β (301) |
PIF PP/TPU | α (110), (040), (130); β (301) |
Samples | Tm, PP (°C) | Tm, PA6 (°C) | Tonset,PP (°C) | Tonset,PA6 (°C) | XC, PP (%) | XC, PA6 (%) |
---|---|---|---|---|---|---|
PP/PA6 | 165.52 | 219.76 | 154.56 | 208.51 | 16.56 | 30.32 |
PIF PP/PA6 | 167.82 | 220.53 | 158.89 | 220.53 | 43.94 | 20.54 |
Samples | Tm, PP (°C) | Tm, POE (°C) | Tonset,PP(°C) | Tonset,POE (°C) | XC, PP (%) |
---|---|---|---|---|---|
PP/POE | 166.34 | 44.25 | 154.34 | 42.74 | 55.72 |
PIF PP/POE | 171.78 | 44.97 | 162.70 | 43.16 | 58.33 |
Samples | Tm, PP (°C) | Tm, POE (°C) | Tonset,PP(°C) | Tonset,POE (°C) | XC, PP (%) |
---|---|---|---|---|---|
PP/TPU | 165.74 | 46.15 | 153.71 | 42.58 | 46.49 |
PIF PP/TPU | 170.74 | 47.63 | 163.32 | 42.67 | 53.35 |
Sample | Bending Strength (MPa) | Increase Ratio (%) |
---|---|---|
PP/PA6 | 43.14 ± 0.5 | - |
PIF PP/PA6 | 66.54 ± 0.3 | 54.24 |
PP/POE | 7.67 ± 0.5 | - |
PIF PP/POE | 13.84 ± 0.6 | 80.44 |
PP/TPU | 7.06 ± 0.2 | - |
PIF PP/TPU | 12.71 ± 0.5 | 80.03 |
Sample | Impact Strength (MPa) | Increase Ratio (%) |
---|---|---|
PP/PA6 | 1.36 ± 0.3 | - |
PIF PP/PA6 | 6.33 ± 0.7 | 365 |
PP/POE | 12.68 ± 0.9 | - |
PIF PP/POE | 51.85 ± 0.8 | 308 |
PP/TPU | 7.93 ± 0.9 | - |
PIF PP/TPU | 53.21 ± 0.7 | 571 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, P.; Fei, Y.; Ruan, S.; Yang, J.; Chen, F.; Jin, Y. The Influence of Pressure-Induced-Flow Processing on the Morphology, Thermal and Mechanical Properties of Polypropylene Blends. J. Compos. Sci. 2021, 5, 64. https://doi.org/10.3390/jcs5030064
Li P, Fei Y, Ruan S, Yang J, Chen F, Jin Y. The Influence of Pressure-Induced-Flow Processing on the Morphology, Thermal and Mechanical Properties of Polypropylene Blends. Journal of Composites Science. 2021; 5(3):64. https://doi.org/10.3390/jcs5030064
Chicago/Turabian StyleLi, Pengfei, Yanpei Fei, Shilun Ruan, Jianjiang Yang, Feng Chen, and Yangfu Jin. 2021. "The Influence of Pressure-Induced-Flow Processing on the Morphology, Thermal and Mechanical Properties of Polypropylene Blends" Journal of Composites Science 5, no. 3: 64. https://doi.org/10.3390/jcs5030064