Next Article in Journal
Tightly-Coupled Joint User Self-Calibration of Accelerometers, Gyroscopes, and Magnetometers
Previous Article in Journal
Acknowledgement to Reviewers of Drones in 2017
Article Menu

Export Article

Open AccessArticle
Drones 2018, 2(1), 3; doi:10.3390/drones2010003

Open Source and Independent Methods for Bundle Adjustment Assessment in Close-Range UAV Photogrammetry

ICube Laboratory UMR 7357, Photogrammetry and Geomatics Group, National Institute of Applied Sciences (INSA), 24 Boulevard de la Victoire, 67084 Strasbourg, France
Department of Computing Science, Umeå University, 90187 Umeå, Sweden
Drone Alsace, 4 Rue Sainte-Catherine, 67000 Strasbourg, France
Author to whom correspondence should be addressed.
Received: 22 December 2017 / Revised: 31 January 2018 / Accepted: 3 February 2018 / Published: 7 February 2018
View Full-Text   |   Download PDF [3085 KB, uploaded 7 February 2018]   |  


Close-range photogrammetry as a technique to acquire reality-based 3D data has, in recent times, seen a renewed interest due to developments in sensor technologies. Furthermore, the strong democratization of UAVs (Unmanned Aerial Vehicles) or drones means that close-range photogrammetry can now be used as a viable low-cost method for 3D mapping. In terms of software development, this led to the creation of many commercial black-box solutions (PhotoScan, Pix4D, etc.). This paper aims to demonstrate how the open source toolbox DBAT (Damped Bundle Adjustment Toolbox) can be used to generate detailed photogrammetric network diagnostics to help assess the quality of surveys processed by the commercial software, PhotoScan. In addition, the Apero module from the MicMac software suite was also used to provide an independent assessment of the results. The assessment is performed by the careful examination of some of the bundle adjustment metrics generated by both open source solutions. A UAV project was conducted on a historical church in the city center of Strasbourg, France, in order to provide a dataset with a millimetric level of precision. Results showed that DBAT can be used to reprocess PhotoScan projects under similar conditions and derive useful metrics from them, while Apero provides a completely independent verification of the results of commercial solutions. Overall, this paper shows that an objective assessment of photogrammetric results is important. In cases where problems are encountered in the project, this assessment method can be useful to detect errors that may not be explicitly presented by PhotoScan. View Full-Text
Keywords: photogrammetry; UAV; open source; bundle adjustment; quality control photogrammetry; UAV; open source; bundle adjustment; quality control

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Murtiyoso, A.; Grussenmeyer, P.; Börlin, N.; Vandermeerschen, J.; Freville, T. Open Source and Independent Methods for Bundle Adjustment Assessment in Close-Range UAV Photogrammetry. Drones 2018, 2, 3.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Metrics

Article Access Statistics



[Return to top]
Drones EISSN 2504-446X Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top