You are currently viewing a new version of our website. To view the old version click .
Proceedings
  • Abstract
  • Open Access

4 December 2017

Design of a Portable and Low-Cost Mass Sensitive Quartz Tuning Fork Sensor †

,
and
1
Physics Engineering Department, Gölbaşı Campus, Ankara University, Ankara 06100, Turkey
2
Biomedical Engineering Department, Bağlıca Campus, Başkent University, Ankara 06790, Turkey
*
Author to whom correspondence should be addressed.
Presented at the 5th International Symposium on Sensor Science (I3S 2017), Barcelona, Spain, 27–29 September 2017.
This article belongs to the Proceedings Proceedings of the 5th International Symposium on Sensor Science (I3S 2017)
The resonance frequency of quartz tuning fork (QTF) depends on the mass adsorbed to its prongs, so it is used to measure minor mass changes and detect target analyte at picogram levels. Although, in several studies, QTF transducers have been implemented in sensors (mass, viscosity, humidity, temperature etc.) or biosensors, their electronic set-up has been expensive and non-portable. Moreover, explanations on details of their instrumentation have been limited and based on noncommercial products. In this study, a low-cost, portable, compact and relatively new QTF sensor device is presented. The instrument is based on a low-cost microcontroller which controls both the direct digital synthesizing (DDS) chip and data acquisition. QTF is excited by the aid of a DDS chip and its output is directly read via the same microcontroller. Moreover, six different types of QTFs with 32 kHz, 32.768 kHz, 40 kHz, 65.536 kHz, 75 kHz and 100 kHz resonance frequencies have been tested. As a case study, temperature effects on stability are studied for the most common type of QTF with the resonance frequency of 32.768 kHz. Consequently, a QTF sensor device is fabricated with more advanced features compared to its alternatives, leading to a more accurate measurement method.

Conflicts of Interest

The authors declare no conflict of interest.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.