Next Article in Journal
Redox Cycling Realized in Paper-Based Electrochemical Biosensor for Highly-Selective Detection of Potassium Ferrocyanide in the Presence of Ascorbic Acid
Previous Article in Journal
Trace Electroanalysis of Perfluorinated Alkyl Substances with Molecularly Imprinted Polymer Sensors
Article Menu
Issue 8 (I3S 2017) cover image

Article Versions

Export Article

Open AccessAbstract
Proceedings 2017, 1(8), 749;

Health Monitoring of Composite Structures via MEMS Sensor Networks: Numerical and Experimental Results

Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
Presented at the 5th International Symposium on Sensor Science (I3S 2017), Barcelona, Spain, 27–29 September 2017.
Author to whom correspondence should be addressed.
Published: 4 December 2017
(This article belongs to the Proceedings of the 5th International Symposium on Sensor Science (I3S 2017))
Download PDF [115 KB, uploaded 4 December 2017]


Laminated composites often develop hidden damages, e.g., delamination. Such events can be effectively sensed through embedded structural health monitoring (SHM) systems, taking advantage of the interlaminar regions to place sensors; experimental campaigns proved that this approach may turn out to increase the sensitivity to small defects and reduce the remaining lifetime of the structure. In former studies, we proposed the adoption of a surface-mounted SHM system based on (inertial) MEMS sensors, which has the advantages of low cost and of suppressing the mentioned effects on lightweight structures. On the other hand, the relatively low accuracy of MEMS sensors may hinder reliable monitoring of the system state; this can be overcome through redundancy and an efficient sensor placement. An automatic approach is presented to define the optimal topology of a network featuring a limited number of sensors, wherein the extent and location of stiffness degradation due to damage are assumed to be unknown. The goal of the optimization procedure is to maximize the overall sensitivity to damage of the measurements collected through the whole SHM system. The method has been implemented in a multi-scale frame, to efficiently handle sensors, damaged regions and structural components of different sizes. Although based on deterministic modeling, results are provided to show how measurement noise can be dealt with; a comparison with a stochastic approach based on Bayesian experimental design is provided too. Experimental data collected by testing composite specimens and panels are finally discussed, to assess the identifiability of damage through the collected (noisy) measurements.
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Share & Cite This Article

MDPI and ACS Style

Mariani, S.; Capellari, G.; Caimmi, F.; Bruggi, M. Health Monitoring of Composite Structures via MEMS Sensor Networks: Numerical and Experimental Results. Proceedings 2017, 1, 749.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Metrics

Article Access Statistics



[Return to top]
Proceedings EISSN 2504-3900 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top