Next Article in Journal
Balance Performance in Collegiate Athletes: A Comparison of Balance Error Scoring System Measures
Previous Article in Journal
The Effects of Haemophilia on the Postural Control of Adolescents
Article Menu
Issue 3 (September) cover image

Export Article

Open AccessArticle
J. Funct. Morphol. Kinesiol. 2017, 2(3), 25; doi:10.3390/jfmk2030025

FGFs Treatment on Amputated Lizard Limbs Stimulate the Regeneration of Long Bones, Opening New Avenues for Limb Regeneration in Amniotes: A Morphological Study

Comparative Histolab and Department of Biology, University of Bologna, via Selmi 3, 40126 Bologna, Italy
Received: 29 April 2017 / Revised: 6 July 2017 / Accepted: 14 July 2017 / Published: 21 July 2017
View Full-Text   |   Download PDF [4253 KB, uploaded 23 July 2017]   |  

Abstract

Previous studies indicated that Fibroblast Growth Factors (FGFs) are present during tail and early limb regeneration in lizards, but FGFs disappear in the limb that turns into a scar and does not regenerate at 25–40 days post-amputation. Based on these indications, the aim of the present study was to evaluate the influence of administered FGFs on limb regeneration in lizards by injections of FGF1–2 into amputated hind-limbs that were studied between 40 and 70 days post-amputation. Outgrowths of 2.0 to 3.5 mm were produced but they did not develop an autopodium during this period. The skin remained most un-scaled, resembling that of a tail blastema. Four hours before sacrifice, the animals were injected with 5BrdU to study cell proliferation using microscopic and immunofluorescent methods. Histological examination of the outgrowths at 40–70 days of regeneration showed the presence a rod of cartilage (femur), or partially or completely sub-divided into two parts likely corresponding to a tibia and fibula. The regenerated cartilage was in continuity with the transected long bones and was surrounded by a perichondrium and a dense connective tissue, sparse nerves while muscles were reduced or absent. Qualitative observations on 5BrdU-immunolabeling indicated that most proliferating cells were present in the apical wound epidermis, the apical-most perichondrium and in the regenerating scales at 40–60 days post-amputation, but decreased at 70 days. Few 5BrdU-labeled cells were seen in other tissues, including in the regenerated cartilages. The present study indicates that FGF1-2 treatment in lizards mainly stimulate cartilage regeneration and the formation of a thick epidermis with an Apical Epidermal Peg, the epidermal micro-region that favors regeneration. In summary, these results suggest that FGFs treatments on amputated limbs could also be attempted in others amniotes, including mammals. However FGFs are not capable to induce an autopodium, which requires further signaling factors for its formation. View Full-Text
Keywords: lizards; limb regeneration; FGF administration; histology; 5BrdU-immunohistochemistry lizards; limb regeneration; FGF administration; histology; 5BrdU-immunohistochemistry
Figures

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Alibardi, L. FGFs Treatment on Amputated Lizard Limbs Stimulate the Regeneration of Long Bones, Opening New Avenues for Limb Regeneration in Amniotes: A Morphological Study. J. Funct. Morphol. Kinesiol. 2017, 2, 25.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
J. Funct. Morphol. Kinesiol. EISSN 2411-5142 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top