Previous Issue
Volume 10, May
 
 

Tomography, Volume 10, Issue 6 (June 2024) – 4 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
11 pages, 1035 KiB  
Systematic Review
The Role of [18F]FDG PET/CT in Predicting Toxicity in Patients with NHL Treated with CAR-T: A Systematic Review
by Natale Quartuccio, Salvatore Ialuna, Sabina Pulizzi, Dante D’Oppido, Stefania Nicolosi and Antonino Maria Moreci
Tomography 2024, 10(6), 869-879; https://doi.org/10.3390/tomography10060066 (registering DOI) - 3 Jun 2024
Abstract
CAR-T-cell therapy, also referred to as chimeric antigen receptor T-cell therapy, is a novel method in the field of immunotherapy for the treatment of non-Hodgkin’s lymphoma (NHL). In patients receiving CAR-T-cell therapy, fluorodeoxyglucose Positron Emission Tomography/Computer Tomography ([18F]FDG PET/CT) plays a [...] Read more.
CAR-T-cell therapy, also referred to as chimeric antigen receptor T-cell therapy, is a novel method in the field of immunotherapy for the treatment of non-Hodgkin’s lymphoma (NHL). In patients receiving CAR-T-cell therapy, fluorodeoxyglucose Positron Emission Tomography/Computer Tomography ([18F]FDG PET/CT) plays a critical role in tracking treatment response and evaluating the immunotherapy’s overall efficacy. The aim of this study is to provide a systematic review of the literature on the studies aiming to assess and predict toxicity by means of [18F]FDG PET/CT in patients with NHL receiving CAR-T-cell therapy. PubMed/MEDLINE and Cochrane Central Register of Controlled Trials (CENTRAL) databases were interrogated by two investigators to seek studies involving the use of [18F]FDG PET/CT in patients with lymphoma undergoing CAR-T-cell therapy. The comprehensive computer literature search allowed 11 studies to be included. The risk of bias for the studies included in the systematic review was scored as low by using version 2 of the “Quality Assessment of Diagnostic Accuracy Studies” tool (QUADAS-2). The current literature emphasizes the role of [18F]FDG PET/CT in assessing and predicting toxicity in patients with NHL receiving CAR-T-cell therapy, highlighting the evolving nature of research in CAR-T-cell therapy. Additional studies are warranted to increase the collected evidence in the literature. Full article
(This article belongs to the Section Cancer Imaging)
Show Figures

Figure 1

21 pages, 10817 KiB  
Article
Breast Cancer Diagnosis Method Based on Cross-Mammogram Four-View Interactive Learning
by Xuesong Wen, Jianjun Li and Liyuan Yang
Tomography 2024, 10(6), 848-868; https://doi.org/10.3390/tomography10060065 (registering DOI) - 1 Jun 2024
Abstract
Computer-aided diagnosis systems play a crucial role in the diagnosis and early detection of breast cancer. However, most current methods focus primarily on the dual-view analysis of a single breast, thereby neglecting the potentially valuable information between bilateral mammograms. In this paper, we [...] Read more.
Computer-aided diagnosis systems play a crucial role in the diagnosis and early detection of breast cancer. However, most current methods focus primarily on the dual-view analysis of a single breast, thereby neglecting the potentially valuable information between bilateral mammograms. In this paper, we propose a Four-View Correlation and Contrastive Joint Learning Network (FV-Net) for the classification of bilateral mammogram images. Specifically, FV-Net focuses on extracting and matching features across the four views of bilateral mammograms while maximizing both their similarities and dissimilarities. Through the Cross-Mammogram Dual-Pathway Attention Module, feature matching between bilateral mammogram views is achieved, capturing the consistency and complementary features across mammograms and effectively reducing feature misalignment. In the reconstituted feature maps derived from bilateral mammograms, the Bilateral-Mammogram Contrastive Joint Learning module performs associative contrastive learning on positive and negative sample pairs within each local region. This aims to maximize the correlation between similar local features and enhance the differentiation between dissimilar features across the bilateral mammogram representations. Our experimental results on a test set comprising 20% of the combined Mini-DDSM and Vindr-mamo datasets, as well as on the INbreast dataset, show that our model exhibits superior performance in breast cancer classification compared to competing methods. Full article
(This article belongs to the Topic AI in Medical Imaging and Image Processing)
9 pages, 2177 KiB  
Technical Note
Application Value of a Novel Micro-Coil in High-Resolution Imaging of Experimental Mice Based on 3.0 T Clinical MR
by Xueke Qiu, Yang Liu and Fajin Lv
Tomography 2024, 10(6), 839-847; https://doi.org/10.3390/tomography10060064 (registering DOI) - 1 Jun 2024
Abstract
The clinical magnetic resonance scanner (field strength ≤ 3.0 T) has limited efficacy in the high-resolution imaging of experimental mice. This study introduces a novel magnetic resonance micro-coil designed to enhance the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR), thereby improving high-resolution imaging [...] Read more.
The clinical magnetic resonance scanner (field strength ≤ 3.0 T) has limited efficacy in the high-resolution imaging of experimental mice. This study introduces a novel magnetic resonance micro-coil designed to enhance the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR), thereby improving high-resolution imaging in experimental mice using clinical magnetic resonance scanners. Initially, a phantom was utilized to determine the maximum spatial resolution achievable by the novel micro-coil. Subsequently, 12 C57BL/6JGpt mice were included in this study, and the novel micro-coil was employed for their scanning. A clinical flexible coil was selected for comparative analysis. The scanning methodologies for both coils were consistent. The imaging clarity, noise, and artifacts produced by the two coils on mouse tissues and organs were subjectively evaluated, while the SNR and CNR of the brain, spinal cord, and liver were objectively measured. Differences in the images produced by the two coils were compared. The results indicated that the maximum spatial resolution of the novel micro-coil was 0.2 mm. Furthermore, the subjective evaluation of the images obtained using the novel micro-coil was superior to that of the flexible coil (p < 0.05). The SNR and CNR measurements for the brain, spinal cord, and liver using the novel micro-coil were significantly higher than those obtained with the flexible coil (p < 0.001). Our study suggests that the novel micro-coil is highly effective in enhancing the image quality of clinical magnetic resonance scanners in experimental mice. Full article
Show Figures

Figure 1

15 pages, 18635 KiB  
Article
Understanding the Dermoscopic Patterns of Basal Cell Carcinoma Using Line-Field Confocal Tomography
by Lorenzo Barbarossa, Martina D’Onghia, Alessandra Cartocci, Mariano Suppa, Linda Tognetti, Simone Cappilli, Ketty Peris, Javiera Perez-Anker, Josep Malvehy, Gennaro Baldino, Caterina Militello, Jean Luc Perrot, Pietro Rubegni and Elisa Cinotti
Tomography 2024, 10(6), 826-838; https://doi.org/10.3390/tomography10060063 (registering DOI) - 22 May 2024
Viewed by 365
Abstract
Basal cell carcinoma (BCC) is the most frequent malignancy in the general population. To date, dermoscopy is considered a key tool for the diagnosis of BCC; nevertheless, line-field confocal optical coherence tomography (LC-OCT), a new non-invasive optical technique, has become increasingly important in [...] Read more.
Basal cell carcinoma (BCC) is the most frequent malignancy in the general population. To date, dermoscopy is considered a key tool for the diagnosis of BCC; nevertheless, line-field confocal optical coherence tomography (LC-OCT), a new non-invasive optical technique, has become increasingly important in clinical practice, allowing for in vivo imaging at cellular resolution. The present study aimed to investigate the possible correlation between the dermoscopic features of BCC and their LC-OCT counterparts. In total, 100 histopathologically confirmed BCC cases were collected at the Dermatologic Clinic of the University of Siena, Italy. Predefined dermoscopic and LC-OCT criteria were retrospectively evaluated, and their frequencies were calculated. The mean (SD) age of our cohort was 65.46 (13.36) years. Overall, BCC lesions were mainly located on the head (49%), and they were predominantly dermoscopically pigmented (59%). Interestingly, all dermoscopic features considered had a statistically significant agreement with the LC-OCT criteria (all p < 0.05). In conclusion, our results showed that dermoscopic patterns may be associated with LC-OCT findings, potentially increasing accuracy in BCC diagnosis. However, further studies are needed in this field. Full article
(This article belongs to the Special Issue Imaging in Cancer Diagnosis)
Show Figures

Figure 1

Previous Issue
Back to TopTop