Next Article in Journal
Electrochemical Study of Na2Fe1−xMnxP2O7 (x = 0, 0.25, 0.5, 0.75, 1) as Cathode Material for Rechargeable Na-Ion Batteries
Next Article in Special Issue
A Technical Report of the Robust Affordable Next Generation Energy Storage System-BASF Program
Previous Article in Journal / Special Issue
Effects of Salt Additives to the KOH Electrolyte Used in Ni/MH Batteries
Article Menu

Export Article

Open AccessArticle
Batteries 2015, 1(1), 74-90; doi:10.3390/batteries1010074

Structure, Hydrogen Storage, and Electrochemical Properties of Body-Centered-Cubic Ti40V30Cr15Mn13X2 Alloys (X = B, Si, Mn, Ni, Zr, Nb, Mo, and La)

1
Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI 48202, USA
2
BASF/Battery Materials-Ovonic, 2983 Waterview Drive, Rochester Hills, MI 48309, USA
*
Author to whom correspondence should be addressed.
Academic Editor: Andreas Jossen
Received: 2 November 2015 / Revised: 30 November 2015 / Accepted: 4 December 2015 / Published: 10 December 2015
(This article belongs to the Special Issue Nickel Metal Hydride Batteries)
View Full-Text   |   Download PDF [3226 KB, uploaded 10 December 2015]   |  

Abstract

Structure, gaseous phase hydrogen storage, and electrochemical properties of a series of TiVCrMn-based body-centered-cubic (BCC) alloys with different partial substitutions for Mn with covalent elements (B and Si), transition metals (Ni, Zr, Nb, and Mo), and rare earth element (La) were investigated. Although the influences from substitutions on structure and gaseous phase storage properties were minor, influences on electrochemical discharge capacity were significant. The first cycle capacity ranged from 16 mAh·g−1 (Si-substituted) to 247 mAh·g−1 (Mo-substituted). Severe alloy passivation in 30% KOH electrolyte was observed, and an original capacity close to 500 mAh·g−1 could possibly be achieved by Mo-substituted alloy if a non-corrosive electrolyte was employed. Surface coating of Nafion to the Mo-substituted alloy was able to increase the first cycle capacity to 408 mAh·g−1, but the degradation rate in mAh·g−1·cycle−1 was still similar to that of standard testing. Electrochemical capacity was found to be closely related to BCC phase unit cell volume and width of the an extra small pressure plateau at around 0.3 MPa on the 30 °C pressure-concentration-temperature (PCT) desorption isotherm. Judging from its high electrochemical discharge capacity, Mo was the most beneficial substitution in BCC alloys for Ni/metal hydride (MH) battery application. View Full-Text
Keywords: hydrogen absorbing alloys; metal hydride (MH) electrode; laves phase alloys; body-centered-cubic (BCC) alloys; catalytic phase hydrogen absorbing alloys; metal hydride (MH) electrode; laves phase alloys; body-centered-cubic (BCC) alloys; catalytic phase
Figures

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Young, K.-H.; Ouchi, T.; Huang, B.; Nei, J. Structure, Hydrogen Storage, and Electrochemical Properties of Body-Centered-Cubic Ti40V30Cr15Mn13X2 Alloys (X = B, Si, Mn, Ni, Zr, Nb, Mo, and La). Batteries 2015, 1, 74-90.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Batteries EISSN 2313-0105 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top