Previous Article in Journal / Special Issue
Quantification of Squalene in Olive Oil Using 13C Nuclear Magnetic Resonance Spectroscopy
Article Menu

Export Article

Open AccessFeature PaperReview
Magnetochemistry 2017, 3(4), 35; doi:10.3390/magnetochemistry3040035

Multi-Quanta Spin-Locking Nuclear Magnetic Resonance Relaxation Measurements: An Analysis of the Long-Time Dynamical Properties of Ions and Water Molecules Confined within Dense Clay Sediments

Interfaces, Confinement, Matériaux et Nanostructures (ICMN), UMR 7374, CNRS and Université d’Orléans, 45071 Orléans CEDEX 2, France
*
Authors to whom correspondence should be addressed.
Received: 5 September 2017 / Revised: 27 October 2017 / Accepted: 31 October 2017 / Published: 14 November 2017
(This article belongs to the Special Issue Nuclear Magnetic Resonance Spectroscopy)
View Full-Text   |   Download PDF [2384 KB, uploaded 14 November 2017]   |  

Abstract

Solid/liquid interfaces are exploited in various industrial applications because confinement strongly modifies the physico-chemical properties of bulk fluids. In that context, investigating the dynamical properties of confined fluids is crucial to identify and better understand the key factors responsible for their behavior and to optimize their structural and dynamical properties. For that purpose, we have developed multi-quanta spin-locking nuclear magnetic resonance relaxometry of quadrupolar nuclei in order to fill the gap between the time-scales accessible by classical procedures (like dielectric relaxation, inelastic and quasi-elastic neutron scattering) and obtain otherwise unattainable dynamical information. This work focuses on the use of quadrupolar nuclei (like 2H, 7Li and 133Cs), because quadrupolar isotopes are the most abundant NMR probes in the periodic table. Clay sediments are the confining media selected for this study because they are ubiquitous materials implied in numerous industrial applications (ionic exchange, pollutant absorption, drilling, waste storing, cracking and heterogeneous catalysis). View Full-Text
Keywords: diffusion in porous media; NMR relaxation; multi-quanta relaxometry; quadrupolar nuclei; clay sediments diffusion in porous media; NMR relaxation; multi-quanta relaxometry; quadrupolar nuclei; clay sediments
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Porion, P.; Delville, A. Multi-Quanta Spin-Locking Nuclear Magnetic Resonance Relaxation Measurements: An Analysis of the Long-Time Dynamical Properties of Ions and Water Molecules Confined within Dense Clay Sediments. Magnetochemistry 2017, 3, 35.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Magnetochemistry EISSN 2312-7481 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top