Next Article in Journal / Special Issue
The Application of Mycorrhizal Fungi and Organic Fertilisers in Horticultural Potting Soils to Improve Water Use Efficiency of Crops
Previous Article in Journal / Special Issue
Effect of Methyl Jasmonate on Physical and Chemical Properties of Mango Fruit cv. Nam Dok Mai
Article Menu

Export Article

Open AccessArticle
Horticulturae 2017, 3(1), 7; doi:10.3390/horticulturae3010007

Hydraulic Performance of Horticultural Substrates—3. Impact of Substrate Composition and Ingredients

Leibniz Centre for Agricultural Landscape Research (ZALF), Institute of Landscape Hydrology, Eberswalder St. 84, Muencheberg D15374, Germany
*
Author to whom correspondence should be addressed.
Academic Editors: Varit Srilaong, Mantana Buanong, Chalermchai Wongs-Aree, Sirichai Kanlayanarat and Douglas D. Archbold
Received: 2 December 2015 / Revised: 26 April 2016 / Accepted: 5 July 2016 / Published: 30 December 2016
(This article belongs to the Special Issue Quality Management of Organic Horticultural Produce)
View Full-Text   |   Download PDF [578 KB, uploaded 30 December 2016]   |  

Abstract

Horticultural substrates, also referred to as growing media, potting soils and gardening or soilless substrates, are widely used as a basis for vegetable and flower production in horticulture. They are created as a composition of different ingredients (bog peat, organic residuals, coir, perlite and other components). Hydraulic properties such as water storage capacity, air capacity, shrinkage behaviour, wettability or hydraulic conductivity are important variables for a comprehensive evaluation of the performance of horticultural substrates. A set of 36 commercial potting soils and substrates was selected and the hydraulic properties (water retention curve, unsaturated hydraulic conductivity function, capillary rise and shrinkage) were measured using the extended evaporation method (EEM). Additionally, the water drop penetration time was determined as a measure of wettability. The hydraulic performance of the horticultural substrates was evaluated. Generally, bog peat is the main component of horticultural substrates. Additionally, coir (raw coconut fibre), bark, different composts and mineral ingredients such as perlite, pumice, vermiculite, sand and others are used. The growing medium with the best hydraulic performance in this study revealed substrates composed of bog peat with added coir, perlite and organic residuals. Mineral ingredients in general decreased the content of easily available water but did not exhibit any significant effect on the other properties studied. However, the risk of a lack of air can be increased by the addition of clay. The presence of perlite had positive effects on the air content and the re-wettability. The presence of organic materials had significant and detrimental effects on the height of the capillary rise. We also found that some products declared as preferable for use in containers were better suited as substrates for bed cultivation. However, a comprehensive evaluation of the eligibility of horticultural substrates in horticulture requires not only hydraulic measurements but also growing experiments and an assessment of their chemical, biological and technological suitability. View Full-Text
Keywords: water retention curve; unsaturated hydraulic conductivity; water repellency; water drop penetration time; shrinkage; extended evaporation method (EEM); HYPROP water retention curve; unsaturated hydraulic conductivity; water repellency; water drop penetration time; shrinkage; extended evaporation method (EEM); HYPROP
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Schindler, U.; Lischeid, G.; Müller, L. Hydraulic Performance of Horticultural Substrates—3. Impact of Substrate Composition and Ingredients. Horticulturae 2017, 3, 7.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Horticulturae EISSN 2311-7524 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top