Temporary Anti-Corrosive Double Layer on Zinc Substrate Based on Chitosan Hydrogel and Epoxy Resin
Abstract
:1. Introduction
2. Results and Discussion
2.1. Coating Thickness and Adhesion Measurements
2.2. Contact Angle and Scanning Electron Microscopy Measurements
2.3. Electrochemical Characterization
2.3.1. Influence of the Electrolyte Nature
2.3.2. Influence of the Immersion Time
2.3.3. Pseudo-Porosity of the Coatings
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Preparation of Chit and EP Precursors
4.3. Preparation of the Coated Samples
4.4. Characterization of the Coatings
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wagle, P.G.; Tamboli, S.S.; More, A.P. Peelable coatings: A review. Prog. Org. Coat. 2021, 150, 106005. [Google Scholar] [CrossRef]
- Dararatana, N.; Seidi, F.; Crespy, D. Polymer conjugates for dual functions of reporting and hindering corrosion. Polymer 2020, 194, 122346. [Google Scholar] [CrossRef]
- Smith, H.E.; Manor, B. Peelable Protective Coating. U.S. Patent 2,543,557, 19 August 1947. [Google Scholar]
- Miyata, K. Composition for forming strippable and anti-corrosive film. U.S. Patent 3717599A, 20 February 1973. [Google Scholar]
- Gao, N.; Li, J.; Zhang, W.; Ma, L.; Nwokolo, I.K.; Liu, F.; Han, E.-H. Double-layer peelable coating with eminent mechanical properties and anti-permeability. Prog. Org. Coat. 2021, 160, 106517. [Google Scholar] [CrossRef]
- Korrapati, V.K.; Scharnagl, N.; Letzig, D.; Zheludkevich, M.L. Self-assembled layers for the temporary corrosion protection of magnesium-AZ31 alloy. Corros. Sci. 2020, 169, 108619. [Google Scholar] [CrossRef]
- Korrapati, V.K.; Scharnagl, N.; Letzig, D.; Zheludkevich, M.L. Bilayer coatings for temporary and long–term corrosion protection of magnesium–AZ31 alloy. Prog. Org. Coat. 2021, 163, 106608. [Google Scholar] [CrossRef]
- Xiong, H.; Qi, F.; Zhao, N.; Yuan, H.; Wan, P.; Liao, B.; Ouyang, X. Effect of organically modified sepiolite as inorganic nanofiller on the anti-corrosion resistance of epoxy coating. Mater. Lett. 2020, 260, 126941. [Google Scholar] [CrossRef]
- Shi, X.; Nguyen, T.A.; Suo, Z.; Liu, Y.; Avci, R. Effect of nanoparticles on the anticorrosion and mechanical properties of epoxy coating. Surf. Coat. Technol. 2009, 204, 237–245. [Google Scholar] [CrossRef]
- Tan, Q.; Gao, Z.; Yan, J.; Hu, W. Research on superhydrophobicity, corrosion and adhesion properties of composite epoxy-based coating. Mater. Today Commun. 2021, 28, 102668. [Google Scholar] [CrossRef]
- Pourhashem, S.; Vaezi, M.R.; Rashidi, A.; Bagherzadeh, M.R. Distinctive roles of silane coupling agents on the corrosion inhibition performance of graphene oxide in epoxy coatings. Prog. Org. Coat. 2017, 111, 47–56. [Google Scholar] [CrossRef]
- Subhi, H.; Zulkifli, Z.A.; Mohamad-Noor, S.S.; Nurul, A.A. Antibacterial properties of gypsum-based chitosan against Streptococcus mutans. Mater. Lett. 2019, 256, 126645. [Google Scholar] [CrossRef]
- Sharma, B.; Malik, P.; Jain, P. Biopolymer reinforced nanocomposites: A comprehensive review. Mater. Today Commun. 2018, 16, 353–363. [Google Scholar] [CrossRef]
- Szőke, F.; Szabó, G.S.; Hórvölgyi, Z.; Albert, E.; Végh, A.G.; Zimányi, L.; Muresan, L.M. Accumulation of 2-Acetylamino-5-mercapto-1,3,4-thiadiazole in chitosan coatings for improved anticorrosive effect on zinc. Int. J. Biol. Macromol. 2020, 142, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Pei, Y.; Zhang, G.; Zhang, C.; Wang, J.; Hang, R.; Yao, X.; Zhang, X. Corrosion resistance, anticoagulant and antibacterial properties of surface-functionalized magnesium alloys. Mater. Lett. 2019, 234, 323–326. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, B.; Jie, P.; Zhu, J.; Cheng, F. Preparation of chitosan/lignosulfonate for effectively removing Pb(II) in water. Polymer 2021, 228, 123878. [Google Scholar] [CrossRef]
- del Olmo, J.A.; Pérez-Álvarez, L.; Martínez, V.S.; Cid, S.B.; Ruiz-Rubio, L.; González, R.P.; Vilas-Vilela, J.L.; Alonso, J.M. Multifunctional antibacterial chitosan-based hydrogel coatings on Ti6Al4V biomaterial for biomedical implant applications. Int. J. Biol. Macromol. 2023, 231, 123328. [Google Scholar] [CrossRef] [PubMed]
- Szőke, F.; Szabó, G.; Simó, Z.; Hórvölgyi, Z.; Albert, E.; Végh, A.G.; Zimányi, L.; Muresan, L.M. Chitosan coatings ionically cross-linked with ammonium paratungstate as anticorrosive coatings for zinc. Eur. Polym. J. 2019, 118, 205–212. [Google Scholar] [CrossRef]
- Selvam, V.; Kumara, M.S.C.; Vadivel, M. Mechanical properties of epoxy/chitosan biocomposites. Int. J. Chem. Sci. 2013, 11, 1103–1109. [Google Scholar]
- Jabeen, S.; Saeed, S.; Kausar, A.; Muhammad, B.; Gul, S.; Farooq, M. Influence of chitosan and epoxy cross-linking on physical properties of binary blends. Int. J. Polym. Anal. Charact. 2016, 21, 163–174. [Google Scholar] [CrossRef]
- Ahmad, B.; Ashfaq, M.; Joy, A.; Carlos, Z.A.; Sudheer, M. Fabrication and characterization of an eco-friendly biodegradable epoxy/chitosan composites. Am. J. Mater. Sci. 2017, 7, 166–169. [Google Scholar]
- Wonnie Ma, I.A.; Shafaamri, A.; Kasi, R.; Balakrishnan, V.; Subramaniam, R.; Arof, A.K. Anticorrosion properties of epoxy-nanochitosan nanocomposite coating. Prog. Org. Coat. 2017, 113, 74–81. [Google Scholar] [CrossRef]
- Arukalam, I.O.; Timothy, U.J.; Madu, I.O.; Achor, J.O. Improving the Water Barrier and Anticorrosion Performances of Epoxy-Chitosan Coatings via Silane Modification. J. Bio-Tribo-Corros. 2021, 7, 85. [Google Scholar] [CrossRef]
- Ovari, T.R.; Katona, G.; Szabo, G.; Muresan, L.M. Electrochemical Evaluation of the Relationship between the Thermal Treatment and the Protective Properties of Thin Silica Coatings on Zinc Substrates. Stud. UBB Chem. 2022, 67, 227–243. [Google Scholar] [CrossRef]
- Márton, P.; Albert, E.; Nagy, N.; Tegze, B.; Szabó, G.S.; Hórvölgyi, Z. Chemically modified chitosan coatings: Wetting and electrochemical studies. Stud. UBB Chem. 2020, 65, 63–79. [Google Scholar] [CrossRef]
- Pillai, C.K.S.; Paul, W.; Sharma, C.P. Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Prog. Polym. Sci. 2009, 34, 641–678. [Google Scholar] [CrossRef]
- Ramdani, N.; Chrigui, M.; Wang, J.; Feng, T.-T.; He, X.-Y.; Liu, W.-B.; Zheng, X.-S. Preparation and properties of chitosan particle-reinforced polybenzoxazine blends. J. Compos. Mater. 2014, 49, 2449–2458. [Google Scholar] [CrossRef]
- Vašková, H.; Vojtech, K. Raman spectroscopy of epoxy resin crosslinking. In Proceedings of the Recent Researches in Automatic Control—13th WSEAS Internation Conference on Automatic Control, Modelling and Simulation, ACMOS’11, Canary Islands, Spain, 27 May 2011; pp. 357–361. [Google Scholar]
- Mendelovits, A.; Prat, T.; Gonen, Y.; Rytwo, G. Improved Colorimetric Determination of Chitosan Concentrations by Dye Binding. Appl. Spectrosc. 2012, 66, 979–982. [Google Scholar] [CrossRef]
- Song, D.; Wan, H.; Tu, X.; Li, W. A better understanding of failure process of waterborne coating/metal interface evaluated by electrochemical impedance spectroscopy. Prog. Org. Coat. 2020, 142, 105558. [Google Scholar] [CrossRef]
- Pozzo, L.D.Y.; da Conceição, T.F.; Spinelli, A.; Scharnagl, N.; Pires, A.T. Chitosan coatings crosslinked with genipin for corrosion protection of AZ31 magnesium alloy sheets. Carbohydr. Polym. 2018, 181, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Ramezanzadeh, B.; Niroumandrad, S.; Ahmadi, A.; Mahdavian, M.; Moghadam, M.M. Enhancement of barrier and corrosion protection performance of an epoxy coating through wet transfer of amino functionalized graphene oxide. Corros. Sci. 2016, 103, 283–304. [Google Scholar] [CrossRef]
- Ovari, T.-R.; Katona, G.; Coros, M.; Szabó, G.; Muresan, L.M. Corrosion behaviour of zinc coated with composite silica layers incorporating poly(amidoamine)-modified graphene oxide. J. Solid State Electrochem. 2022, 1–17. [Google Scholar] [CrossRef]
- Li, Y.; Yang, Z.; Qiu, H.; Dai, Y.; Zheng, Q.; Li, J.; Yang, J. Self-aligned graphene as anticorrosive barrier in waterborne polyurethane composite coatings. J. Mater. Chem. A 2014, 2, 14139–14145. [Google Scholar] [CrossRef]
- Ramezanzadeh, M.; Ramezanzadeh, B.; Sari, M.G.; Saeb, M.R. Corrosion resistance of epoxy coating on mild steel through polyamidoamine dendrimer-covalently functionalized graphene oxide nanosheets. J. Ind. Eng. Chem. 2020, 82, 290–302. [Google Scholar] [CrossRef]
- Elsener, B.; Rota, A.; Böhni, H. Impedance Study on the Corrosion of PVD and CVD Titanium Nitride Coatings. Mater. Sci. Forum 1989, 44–45, 29–38. [Google Scholar] [CrossRef]
- Carranza, M.S.S.; Reyes, Y.I.A.; Gonzales, E.C.; Arcon, D.P.; Franco, F.C., Jr. Electrochemical and quantum mechanical investi-gation of various small molecule organic compounds as corrosion inhibitors in mild steel. Heliyon 2021, 7, e07952. [Google Scholar] [CrossRef] [PubMed]
Immersion Time in 3 w/w% NaCl | |||
0 h | 55.10%, 1B | 99.90%, 5B | 57.14%, 1B |
2 h | 26.53%, 0B | 99.90%, 5B | 51.03%, 1B |
24 h | 0%, 0B | 99.90%, 5B | 24.49%, 0B |
Samples | OCP (V vs. Ag/AgCl/KClsat) |
---|---|
Zn | −0.998 |
Zn/Chit | −0.981 |
Zn/EP | −0.979 |
Zn/Chit/EP | −0.926 |
Sample | Rs kΩ cm2 | Qcoat μSsn | Rcoat kΩ cm2 | Qdl μSsn | Rct kΩ cm2 | Rp = Rcoat + Rct kΩ cm2 | Chi2 |
---|---|---|---|---|---|---|---|
Zn | 0.01 | - | - | 56.38 | 1.08 | 1.08 | 6.35 × 10−3 |
Zn/Chit | 0.01 | 865 | 0.92 | 1.31 | 0.23 | 1.15 | 8.22 × 10−4 |
Zn/EP | ~0.00 | 0.02 | 1841 | 0.0016 | 383 | 2224 | 2.83 × 10−3 |
Zn/Chit/EP | 0.44 | 0.79 | 875 | 0.0006 | 3362 | 4237 | 6.71 × 10−3 |
Sample | Rp (kΩ) | Ecorr (V) | icorr (µA) | P (%) |
---|---|---|---|---|
Zn | 0.43 | −1.025 | 50.70 | - |
Zn/Chit | 0.58 | −1.009 | 37.27 | 30.18 |
Zn/EP | 1023 | −0.932 | 2.13 × 10−2 | 0.00023 |
Zn/Chit/EP | 4111 | −0.891 | 5.29 × 10−3 | 0.00001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ovari, T.-R.; Szőke, Á.F.; Katona, G.; Szabó, G.S.; Muresan, L.M. Temporary Anti-Corrosive Double Layer on Zinc Substrate Based on Chitosan Hydrogel and Epoxy Resin. Gels 2023, 9, 361. https://doi.org/10.3390/gels9050361
Ovari T-R, Szőke ÁF, Katona G, Szabó GS, Muresan LM. Temporary Anti-Corrosive Double Layer on Zinc Substrate Based on Chitosan Hydrogel and Epoxy Resin. Gels. 2023; 9(5):361. https://doi.org/10.3390/gels9050361
Chicago/Turabian StyleOvari, Tamara-Rita, Árpád Ferenc Szőke, Gabriel Katona, Gabriella Stefánia Szabó, and Liana Maria Muresan. 2023. "Temporary Anti-Corrosive Double Layer on Zinc Substrate Based on Chitosan Hydrogel and Epoxy Resin" Gels 9, no. 5: 361. https://doi.org/10.3390/gels9050361