Subclinical Myocardial Injury in Patients Recovered from COVID-19 Pneumonia: Predictors and Longitudinal Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Transthoracic Echocardiography
2.3. Pulmonary Functional Test
2.4. Six-Minute Walking Test
2.5. Statistical Analysis
3. Results
3.1. Characteristics at Hospitalisation
3.2. Characteristics at First Follow-Up Visit
3.3. Predictors of LV Subclinical Impairment
3.4. Predictors of RV Subclinical Impairment
3.5. Longitudinal Evolution of Follow-Up Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Akhmerov, A.; Marbán, E. COVID-19 and the Heart. Circ. Res. 2020, 126, 1443–1455. [Google Scholar] [CrossRef]
- Cecchetto, A.; Nistri, S.; Baroni, G.; Torreggiani, G.; Aruta, P.; Pergola, V.; Baritussio, A.; Previtero, M.; Palermo, C.; Iliceto, S.; et al. Role of Cardiac Imaging Modalities in the Evaluation of COVID-19-Related Cardiomyopathy. Diagnostics 2022, 12, 896. [Google Scholar] [CrossRef]
- Zhang, Y.; Coats, A.J.; Zheng, Z.; Adamo, M.; Ambrosio, G.; Anker, S.D.; Butler, J.; Xu, D.; Mao, J.; Khan, M.S.; et al. Management of heart failure patients with COVID-19: A joint position paper of the Chinese Heart Failure Association & National Heart Failure Committee and the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2020, 22, 941–956. [Google Scholar] [CrossRef]
- Mele, D.; Flamigni, F.; Rapezzi, C.; Ferrari, R. Myocarditis in COVID-19 patients: Current problems. Intern. Emerg. Med. 2021, 16, 1123–1129. [Google Scholar] [CrossRef]
- Adu-Amankwaah, J.; Mprah, R.; Adekunle, A.O.; Noah, M.L.N.; Adzika, G.K.; Machuki, J.O.; Sun, H. The cardiovascular aspect of COVID-19. Ann. Med. 2021, 53, 227–236. [Google Scholar] [CrossRef]
- Pal, A.; Ahirwar, A.K.; Sakarde, A.; Asia, P.; Gopal, N.; Alam, S.; Kaim, K.; Ahirwar, P.; Sorte, S.R. COVID-19 and cardiovascular disease: A review of current knowledge. Horm. Mol. Biol. Clin. Investig. 2021, 42, 99–104. [Google Scholar] [CrossRef]
- Cenko, E.; Badimon, L.; Bugiardini, R.; Claeys, M.J.; De Luca, G.; de Wit, C.; Derumeaux, G.; Dorobantu, M.; Duncker, D.J.; Eringa, E.C.; et al. Cardiovascular disease and COVID-19: A consensus paper from the ESC Working Group on Coronary Pathophysiology & Microcirculation, ESC Working Group on Thrombosis and the Association for Acute CardioVascular Care (ACVC), in collaboration with the European Heart Rhythm Association (EHRA). Cardiovasc. Res. 2021, 117, 2705–2729. [Google Scholar] [CrossRef]
- Clerkin, K.J.; Fried, J.A.; Raikhelkar, J.; Sayer, G.; Griffin, J.M.; Masoumi, A.; Jain, S.S.; Burkhoff, D.; Kumaraiah, D.; Rabbani, L.R.; et al. COVID-19 and Cardiovascular Disease. Circulation 2020, 141, 1648–1655. [Google Scholar] [CrossRef]
- Shi, S.; Qin, M.; Shen, B.; Cai, Y.; Liu, T.; Yang, F.; Gong, W.; Liu, X.; Liang, J.; Zhao, Q.; et al. Association of Cardiac Injury with Mortality in Hospitalized Patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020, 5, 802–810. [Google Scholar] [CrossRef]
- Janus, S.E.; Hajjari, J.; Karnib, M.; Tashtish, N.; Al-Kindi, S.G.; Hoit, B.D. Prognostic Value of Left Ventricular Global Longitudinal Strain in COVID-19. Am. J. Cardiol. 2020, 131, 134–136. [Google Scholar] [CrossRef]
- Li, Y.; Li, H.; Zhu, S.; Xie, Y.; Wang, B.; He, L.; Zhang, D.; Zhang, Y.; Yuan, H.; Wu, C.; et al. Prognostic Value of Right Ventricular Longitudinal Strain in Patients with COVID-19. JACC Cardiovasc. Imaging 2020, 13, 2287–2299. [Google Scholar] [CrossRef]
- Ruan, Q.; Yang, K.; Wang, W.; Jiang, L.; Song, J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020, 46, 846–848. [Google Scholar] [CrossRef]
- Huang, L.; Zhao, P.; Tang, D.; Zhu, T.; Han, R.; Zhan, C.; Liu, W.; Zeng, H.; Tao, Q.; Xia, L. Cardiac Involvement in Patients Recovered From COVID-2019 Identified Using Magnetic Resonance Imaging. JACC Cardiovasc. Imaging 2020, 13, 2330–2339. [Google Scholar] [CrossRef]
- Stöbe, S.; Richter, S.; Seige, M.; Stehr, S.; Laufs, U.; Hagendorff, A. Echocardiographic characteristics of patients with SARS-CoV-2 infection. Clin. Res. Cardiol. 2020, 109, 1549–1566. [Google Scholar] [CrossRef]
- Heuvel, F.M.A.V.D.; Vos, J.L.; Koop, Y.; van Dijk, A.P.J.; Duijnhouwer, A.L.; de Mast, Q.; van de Veerdonk, F.L.; Bosch, F.; Kok, B.; Netea, M.G.; et al. Cardiac function in relation to myocardial injury in hospitalised patients with COVID-19. Neth. Heart J. 2020, 28, 410–417. [Google Scholar] [CrossRef]
- Baycan, O.F.; Barman, H.A.; Atici, A.; Tatlisu, A.; Bolen, F.; Ergen, P.; Icten, S.; Gungor, B.; Caliskan, M. Evaluation of biventricular function in patients with COVID-19 using speckle tracking echocardiography. Int. J. Cardiovasc. Imaging 2020, 37, 135–144. [Google Scholar] [CrossRef]
- Chang, W.-T.; Lee, W.-H.; Lee, W.-T.; Chen, P.-S.; Su, Y.-R.; Liu, P.-Y.; Liu, Y.-W.; Tsai, W.-C. Left ventricular global longitudinal strain is independently associated with mortality in septic shock patients. Intensive Care Med. 2015, 41, 1791–1799. [Google Scholar] [CrossRef]
- Baykiz, D.; Govdeli, E.A.; Ozer, P.K.; Karaayvaz, E.B.; Catma, Y.; Medetalibeyoglu, A.; Cagatay, A.; Umman, B.; Tukek, T.; Bugra, Z. Evaluation the relationship of left ventricular global longitudinal strain and laboratory parameters in discharged patients with COVID-19: A follow-up study. Int. J. Cardiovasc. Imaging 2021, 37, 2451–2464. [Google Scholar] [CrossRef]
- Kocas, B.B.; Cetinkal, G.; Ser, O.S.; Kilci, H.; Keskin, K.; Ozcan, S.N.; Verdi, Y.; Zeren, M.I.; Kilickesmez, K. The relation between left ventricular global longitudinal strain and troponin levels in patients hospitalized with COVID-19 pneumonia. Int. J. Cardiovasc. Imaging 2021, 37, 125–133. [Google Scholar] [CrossRef]
- Bhatia, H.S.; Bui, Q.M.; King, K.; DeMaria, A.; Daniels, L.B. Subclinical left ventricular dysfunction in COVID-19. IJC Heart Vasc. 2021, 34, 100770. [Google Scholar] [CrossRef]
- Ozer, P.K.; Govdeli, E.A.; Baykiz, D.; Karaayvaz, E.B.; Medetalibeyoglu, A.; Catma, Y.; Elitok, A.; Cagatay, A.; Umman, B.; Oncul, A.; et al. Impairment of right ventricular longitudinal strain associated with severity of pneumonia in patients recovered from COVID-19. Int. J. Cardiovasc. Imaging 2021, 37, 2387–2397. [Google Scholar] [CrossRef]
- Logue, J.K.; Franko, N.M.; McCulloch, D.J.; McDonald, D.; Magedson, A.; Wolf, C.R.; Chu, H.Y. Sequelae in Adults at 6 Months After COVID-19 Infection. JAMA Netw. Open 2021, 4, e210830. [Google Scholar] [CrossRef]
- Do, J.E.H.; Niehaus, W.N.; Whiteson, J.; Azola, A.; Baratta, J.M.; Fleming, T.K.; Kim, S.Y.; Naqvi, H.; Sampsel, S.; Silver, J.K.; et al. Multidisciplinary collaborative consensus guidance statement on the assessment and treatment of fatigue in postacute sequelae of SARS-CoV-2 infection (PASC) patients. PMR 2021, 13, 1027–1043. [Google Scholar] [CrossRef]
- Rickham, P.P. Human Experimentation: Code of Ethics of the World Medical Association. Br. Med. J. 1964, 2, 177. [Google Scholar] [CrossRef]
- Bestall, J.C.; Paul, E.A.; Garrod, R.; Garnham, R.; Jones, P.W.; Wedzicha, J.A. Usefulness of the Medical Research Council (MRC) dyspnea scale as a measure of disability in patients with chronic obstructive pulmonary disease. Thorax 1999, 54, 5816. [Google Scholar] [CrossRef]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for Car-diac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 28, 1–39.e14. [Google Scholar] [CrossRef]
- Humbert, M.; Kovacs, G.; Hoeper, M.M.; Badagliacca, R.; Berger, R.M.F.; Brida, M.; Carlsen, J.; Coats, A.J.S.; Escribano-Subias, P.; Ferrari, P.; et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension Developed by the task force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS). Eur. Heart J. 2022, 43, 3618–3731. [Google Scholar] [CrossRef]
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; Van Der Grinten, C.P.M.; Gustafsson, P.; et al. Standardisation of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef]
- MacIntyre, N.; Crapo, R.O.; Viegi, G.; Johnson, D.C.; van der Grinten, C.P.M.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Enright, P.; et al. Standardisation of the single-breath determination of carbon monoxide uptake in the lung. Eur. Respir. J. 2005, 26, 720–735. [Google Scholar] [CrossRef]
- Quanjer, P.H.; Stanojevic, S.; Cole, T.J.; Baur, X.; Hall, G.L.; Culver, B.H.; Enright, P.L.; Hankinson, J.L.; Ip, M.S.M.; Zheng, J.; et al. Multi-ethnic reference values for spirometry for the 3–95-yr age range: The global lung function 2012 equations. Eur. Respir. J. 2012, 40, 1324–1343. [Google Scholar] [CrossRef]
- Cotes, J.E.; Chinn, D.J.; Quanjer, P.H.; Roca, J.; Yernault, J.C. Standardization of the measurement of transfer factor (diffusing capacity). Eur. Respir. J. 1993, 6, 41–52. [Google Scholar] [CrossRef]
- Singh, S.J.; Puhan, M.A.; Andrianopoulos, V.; Hernandes, N.A.; Mitchell, K.E.; Hill, C.J.; Lee, A.L.; Camillo, C.A.; Troosters, T.; Spruit, M.A.; et al. An official systematic review of the European Respiratory Society/American Thoracic Society: Measurement properties of field walking tests in chronic respiratory disease. Eur. Respir. J. 2014, 44, 1447–1478. [Google Scholar] [CrossRef]
- Özer, S.; Candan, L.; Özyıldız, A.G.; Turan, O.E. Evaluation of left ventricular global functions with speckle tracking echocardiography in patients recovered from COVID-19. Int. J. Cardiovasc. Imaging 2021, 37, 2227–2233. [Google Scholar] [CrossRef]
- Mahajan, S.; Kunal, S.; Shah, B.; Garg, S.; Palleda, G.M.; Bansal, A.; Batra, V.; Yusuf, J.; Mukhopadhyay, S.; Kumar, S.; et al. Left ventricular global longitudinal strain in COVID-19 recovered patients. Echocardiography 2021, 38, 1722–1730. [Google Scholar] [CrossRef]
- Shimoni, O.; Korenfeld, R.; Goland, S.; Meledin, V.; Haberman, D.; George, J.; Shimoni, S. Subclinical Myocardial Dysfunction in Patients Recovered from COVID-19 Disease: Correlation with Exercise Capacity. Biology 2021, 10, 1201. [Google Scholar] [CrossRef]
- Raafs, A.G.; Ghossein, M.A.; Brandt, Y.; Henkens, M.T.; Kooi, M.E.; Vernooy, K.; Spaanderman, M.E.; Gerretsen, S.; van Santen, S.; Driessen, R.G.; et al. Cardiovascular outcome 6 months after severe coronavirus disease 2019 infection. J. Hypertens. 2022, 40, 1278–1287. [Google Scholar] [CrossRef]
- Rameshwar, R.; Meenakshi, K.; Hanumanram, G.; Kannan, R.; Kumar, S.M.; Damodaran, J.; Nandhini, S. Post covid assesment of right and left ventricular global longitudinal strain. Indian Heart J. 2022, 74, 144–147. [Google Scholar] [CrossRef]
- Heuvel, F.M.A.V.D.; Vos, J.L.; van Bakel, B.; Duijnhouwer, A.L.; van Dijk, A.P.J.; Dimitriu-Leen, A.C.; Koopmans, P.C.; de Mast, Q.; van de Veerdonk, F.L.; Bosch, F.H.; et al. Comparison between myocardial function assessed by echocardiography during hospitalization for COVID-19 and at 4 months follow-up. Int. J. Cardiovasc. Imaging 2021, 37, 3459–3467. [Google Scholar] [CrossRef]
- Bieber, S.; Kraechan, A.; Hellmuth, J.C.; Muenchhoff, M.; Scherer, C.; Schroeder, I.; Irlbeck, M.; Kaeaeb, S.; Massberg, S.; Hausleiter, J.; et al. Left and right ventricular dysfunction in patients with COVID-19-associated myocardial injury. Infection 2021, 49, 491–500. [Google Scholar] [CrossRef]
- Takahashi, T.; Kusunose, K.; Zheng, R.; Yamaguchi, N.; Hirata, Y.; Nishio, S.; Saijo, Y.; Ise, T.; Yamaguchi, K.; Yagi, S.; et al. Association between cardiovascular risk factors and left ventricular strain distribution in patients without previous cardiovascular disease. J. Echocardiogr. 2022, 20, 208–215. [Google Scholar] [CrossRef]
- Akkaya, F.; Yenerçağ, F.N.T.; Kaya, A.; Şener, Y.Z.; Bağcı, A. Long term effects of mild severity COVID-19 on right ventricular functions. Int. J. Cardiovasc. Imaging 2021, 37, 3451–3457. [Google Scholar] [CrossRef]
- Lassen, M.C.H.; Skaarup, K.G.; Lind, J.N.; Alhakak, A.S.; Sengeløv, M.; Nielsen, A.B.; Simonsen, J.; Johansen, N.D.; Davidovski, F.S.; Mb, J.C.; et al. Recovery of cardiac function following COVID-19–ECHOVID-19: A prospective longitudinal cohort study. Eur. J. Heart Fail. 2021, 23, 1903–1912. [Google Scholar] [CrossRef]
- Daher, A.; Balfanz, P.; Cornelissen, C.; Müller, A.; Bergs, I.; Marx, N.; Müller-Wieland, D.; Hartmann, B.; Dreher, M.; Müller, T. Follow up of patients with severe coronavirus disease 2019 (COVID-19): Pulmonary and extrapulmonary disease sequelae. Respir. Med. 2020, 174, 106197. [Google Scholar] [CrossRef]
- Huang, C.; Huang, L.; Wang, Y.; Li, X.; Ren, L.; Gu, X.; Kang, L.; Guo, L.; Liu, M.; Zhou, X.; et al. 6-month consequences of COVID-19 in patients discharged from hospital: A cohort study. Lancet 2021, 397, 220–232. [Google Scholar] [CrossRef]
Age (y) (median IQR [range]) | 65 [55–73] |
Gender (F (%), M (%)) | 88 (39%), 137 (61%) |
Smoke (n (%)) | No (125 (56%)) User (11 (5%)) Former smoker (88 (39%)) |
Body mass index (kg/m2) (median IQR [range]) | 28.1 [24–31.4] |
Previous cardiovascular disease (n (%)) | Absent (213 (95%)) Present (12 (5.3%)) |
Type of cardiovascular disease (n (%)) | Ischemic disease (8 (3.5%)) Valvular disease (3 (1.3%)) HCM (1 (0.4%)) |
Duration of hospitalisation (days) (median IQR [range]) | 18 [12, 28] |
Respiratory ventilation (type (n (%))) | Absent (36 (16%)) NC-SM (25 (11%)) RM (6 (3%)) HFNC (69 (31%)) NIV (28 (13%)) MV (54 (25%)) ECMO (2 (1%)) |
Troponin I (ng/L) (median IQR [range]) (n.v. < 34 ng/L) | 9 [5, 26] |
CRP (mg/L) (median IQR [range]) (n.v. < 5 mg/L) | 120 [81, 180] |
D-dimer (ng/mL) (median IQR [range]) (n.v. < 500 ng/mL) | 662 [295, 1927] |
BNP (pg/mL) (median IQR [range]) (n.v. < 125 pg/mL) | 70 [26, 120] |
Cardiovascular risk factors (n (%)) | Absent (74 (33%)) Present (151 (67%)) |
Cardiovascular risk factors type (n (%)) | Hypertension (101 (45%)) Dyslipidaemia (33 (14%)) Diabetes Mellitus (34 (15%)) Obesity (58 (26%)) CKD (7 (3%)) |
Total Patients (n = 225) | Patients with LVGLS of >−18% (n = 81) | Patients with LVGLS of ≤−18% (n = 144) | Patients with RVFWS of >−20% (n = 16) | Patients with RVFWS of ≤−20% (n = 209) | |
---|---|---|---|---|---|
Days from hospitalisation (median IQR, [range]) | 154 [113, 225] | 130 [115, 212] | 149 [107, 228] | 122 [84, 212] | 144 [112, 222] |
Presence of dyspnoea at follow-up (n (%)) | Yes (115 (51%)) No (110 (49%)) | Yes (43 (53%)) No (38 (47%)) | Yes (73 (51%)) No (71 (49%)) | Yes (10 (63%)) No (6 (37%)) | Yes (106 (51%)) No (103 (49%)) |
Grade of dyspnoea (mMRC scale) (n (%)) | 0 (43 (19%)) 1 (38 (17%)) 2 (22 (10%)) 3 (12 (5%)) | 0 (17 (21%)) 1 (11 (14%)) 2 (8 (10%)) 3 (7 (9%)) | 0 (29 (20%)) 1 (21 (15%)) 2 (14 (10%)) 3 (9 (6%)) | 0 (2 (13%)) 1 (2 (13%)) 2 (3 (18%)) 3 (3 (18%)) | 0 (45 (22%)) 1 (27 (13%)) 2 (27 (13%)) 3 (7 (3%)) |
Laboratory tests | |||||
Troponin (ng/L) (median IQR [range]) | 2 [2.0, 4.0] | 2.6 [2.0, 5.7] | 2 [2.0, 2.7] | 2.1 [2, 7.2] | 2 [2, 3] |
CRP (mg/L) (median IQR [range]) | 2.9 [2.9, 3.0] | 2.9 [2.9, 4.1] | 2.9 [2.9, 2.9] | 2.9 [2.9, 3.6] | 2.9 [2.9, 2.9] |
D-dimer (ng/L) (median IQR [range]) | 150 [150, 154] | 150 [150, 184] | 150 [150, 150] | 150 [150, 228] | 150 [150, 150] |
BNP (pg/L) (median IQR [range]) | 22 [12, 46] | 130 [115, 212] | 22 [13, 43] | 30 [11, 50] | 22 [13, 45] |
Six-minute walking test | |||||
Distance (m) (median IQR [range]) | 420 [360, 480] | 420 [360, 450] | 450 [375, 495] | 390 [300, 450] | 450 [368, 480] |
Final SpO2 (%) (median IQR [range]) | 96 [95, 98] | 96 [94, 97] | 97 [95, 98] | 96 [91, 97] | 97 [95, 98] |
Absolute drop in SpO2 (%) (median IQR [range]) | 2 [1, 3] | 2 [1, 4] | 2 [1, 4] | 2 [2, 3] | 2 [1, 3.5] |
Pulmonary functional test | |||||
VC (L) (median IQR [range]) | 3.6 [2.9, 4.2] | 3.5 [2.8, 4.1] | 3.6 [2.9, 4.2] | 3.5 [2.7, 4.2] | 3.6 [2.9, 4.3] |
VC (%) (median IQR [range]) | 102 [91, 114] | 96 [84, 110] | 105 [95, 116] | 87 [84, 91] | 104 [92, 114] |
TLC (L) (median IQR [range]) | 5.6 [4.6, 6.6] | 5.8 [4.7, 6.6] | 5.6 [4.5, 6.6] | 5.6 [4.4, 6.3] | 5.8 [4.7, 6.7] |
TLC (%) (median IQR [range]) | 95 [86, 103] | 92 [82, 102] | 96 [88, 105] | 85 [73, 94] | 95 [87, 105] |
DLCO (mL/min/mmHg) median IQR [range]) | 19 [14, 23] | 19 [14, 23] | 19 [14, 23] | 20 [12, 23] | 20 [14, 24] |
DLCO (%) (median IQR [range]) | 76 [61, 87] | 75 [62, 87] | 79 [61, 88] | 68 [56, 78] | 78 [62, 90] |
KCO (L) (median IQR [range]) | 3.6 [2.9, 4.1] | 3.6 [2.8, 4.2] | 3.6 [3, 4] | 3.8 [3, 4] | 3.65 [3, 4] |
MIP (cmH2O) (median IQR [range]) | 74 [56, 103] | 80 [57, 98] | 73 [58, 104] | 94 [41, 126] | 78 [59, 104] |
MEP (cmH2O) (median IQR [range]) | 90 [68, 113] | 92 [74, 118] | 90 [68, 110] | 86 [64, 127] | 90 [70, 113] |
Tiffeneau index (%) (median IQR [range]) | 0.84 [0.79, 0.88] | 0.85 [0.79, 0.89] | 0.84 [0.8, 0.87] | 0.87 [0.81, 0.90] | 0.84 [0.79, 0.88] |
Transthoracic Echocardiography | |||||
---|---|---|---|---|---|
Total Patients (n = 225) | Patients with LVGLS of >−18% (n = 81) | Patients with LVGLS of ≤−18% (n = 144) | Patients with RVFWS of >−20% (n = 16) | Patients with RVFWS of ≤−20% (n = 209) | |
LVEDVi biplane (mL/m2) (median IQR [range]) | 51 [43, 58] | 51 [43, 59] | 51 [44, 58] | 49 [41, 57] | 51 [44, 58] |
LVEDVi 3D (mL/m2) (median IQR [range]) | 54 [47, 62] | 54 [45, 64] | 55 [49, 62] | 56 [46, 49] | 55 [47, 53] |
LVESVi biplane (mL/m2) (median IQR [range]) | 20 [16, 23] | 21 [17, 25] | 19 [16, 22] | 19 [14, 24] | 20 [16, 24] |
LVESVi 3D (mL/m2) (median IQR [range]) | 21 [18, 25] | 23 [19, 28] | 20 [17, 23] | 22 [18, 26] | 21 [18, 25] |
LVEF biplane (%) (median IQR [range]) | 61 [57, 65] | 58 [55, 62] | 63 [59, 66] | 64 [57, 66] | 61 [57, 64] |
LVEF 3D (%) (median IQR [range]) | 61 [58, 64] | 58 [55, 60] | 62 [59, 65] | 58 [57, 63] | 60 [58, 64] |
LVGLS (%) (median IQR [range]) | −18.6 [−20, −17] | −16.4 [−17, −15] | −20 [−21, −19] | −17 [−19, −15] | −18.6 [0.20, −17] |
E/A ratio (median IQR [range]) | 0.85 [0.71, 1.08] | 0.77 [0.62, 0.96] | 0.94 [0.78, 1.17] | 0.92 [0.71, 1.08] | 0.88 [0.73, 1.09] |
E/E’ ratio (median IQR [range]) | 7.55 [6.0, 9.11] | 8.11 [6.3, 9.7] | 6.93 [5.8, 8.8] | 8.61 [6.7, 9.9] | 7 [6, 9] |
Left atrial volume index (mL/m2) median IQR [range]) | 30 [25, 35] | 29 [25, 36] | 30 [26, 35] | 28 [24, 34] | 30 [26, 36] |
RVEDAi (cm2/m2) (median IQR [range]) | 11 [9, 12] | 10 [9, 11] | 11 [9, 12] | 10 [9, 12] | 11 [10, 12] |
RVESAi (cm2/m2) (median IQR [range]) | 6 [5, 7] | 6 [5, 7] | 6 [5, 7] | 7 [5, 7] | 6 [5, 7] |
FAC (%) (median IQR [range]) | 44 [40, 47] | 43 [40, 48] | 45 [41, 47] | 41 [37, 43] | 44 [41, 48] |
RVEDVi 3D (mL/m2) (median IQR [range]) | 50 [41, 61] | 44 [38, 58] | 52 [42, 61] | 51 [36, 57] | 50 [41, 60] |
RVESVi 3D (mL/m2) (median IQR [range]) | 23 [19, 30] | 23 [20, 28] | 24 [19, 32] | 27 [21, 31] | 23 [19, 29] |
RVEF 3D (%) (median IQR [range]) | 52 [47, 56] | 52 [48, 54] | 52 [47, 57] | 50 [44, 53] | 52 [48, 57] |
RVFWS (%) (median IQR [range]) | −24.4 [−27, −22] | −23 [−26, −21] | −22 [−28, −22] | −18 [−18.6, −17] | −25 [−28, −22] |
TAPSE (mm) (median IQR [range]) | 22 [20, 24] | 21 [20, 24] | 22 [20, 25] | 22 [19, 24] | 22 [20, 24] |
Probability of pulmonary hypertension (n (%)) | |||||
Low | (193 (93%)) | (72 (89%)) | (124 (86%)) | (15 (94%)) | (189 (90%)) |
Intermediate | (11 (5%)) | (5 (6%)) | (20 (14%)) | (18 (9%)) | |
Intermediate–high | (3 (1.4%)) | 3 (4%)) | (1 (6%)) | (2 (1%)) | |
High | (1 (0.5%)) | (1 (1%)) | |||
SPAP (mmHg) (median IQR [range]) | 26 [21, 29] | 26 [22, 32] | 26 [21, 29] | 27 [21, 29] | 26 [22, 30] |
PVR (WU) (median IQR [range]) | 1.73 (1.49, 1.99) | 1.85 [1.61, 2.08] | 1.67 [1.42, 1.96] | 1.67 [1.41, 2.15] | 171.4 [1.5, 1.99] |
Univariable | Multivariable | |||||
---|---|---|---|---|---|---|
Characteristic | OR | 95% CI | p-Value | OR | 95% CI | p-Value |
Age | 1.03 | 1.00, 1.05 | 0.033 | |||
Gender | 0.007 | 0.008 | ||||
Male | 2.24 | 1.25, 4.12 | 2.32 | 1.24, 4.42 | ||
Tobacco consumption | 0.053 | |||||
BMI | 1.05 | 1.00, 1.11 | 0.057 | |||
Days of hospitalisation | 0.99 | 0.97, 1.01 | 0.2 | |||
Troponin I | 1.00 | 1.00, 1.00 | 0.3 | |||
CRP | 1.00 | 1.0, 1.00 | 0.5 | |||
D-dimer | 1.00 | 1.00, 1.00 | 0.3 | |||
BNP | 1.00 | 1.00, 1.00 | 0.3 | |||
CV risk factors | 5.77 | 2.85, 12.8 | <0.001 | 6.44 | 3.07, 14.9 | <0.001 |
Univariable | Multivariable | |||||
---|---|---|---|---|---|---|
Characteristic | OR | 95% CI | p-Value | OR | 95% CI | p-Value |
Pulmonary functional test | ||||||
VC | 0.89 | 0.74, 1.06 | 0.2 | |||
VC % | 0.99 | 0.99, 1.00 | 0.015 | |||
TLC | 0.92 | 0.83, 1.01 | 0.094 | |||
TLC % | 0.99 | 0.99, 1.00 | 0.11 | |||
DLCO | 0.98 | 0.95, 1.00 | 0.085 | |||
DLCO % | 0.99 | 0.99, 1.00 | 0.078 | |||
KCO | 1.00 | 0.99, 1.00 | 0.2 | |||
MIP | 1.0 | 0.99, 1.00 | 0.11 | |||
MEP | 1.0 | 0.99, 1.00 | 0.10 | |||
Six-minute walking test | ||||||
Distance | 1.00 | 1.00, 1.00 | 0.005 | |||
Final saturation | 0.99 | 0.99, 1.00 | 0.020 | 0.99 | 0.98, 1.00 | 0.002 |
Absolute drop in SpO2 | 0.88 | 0.76, 1.00 | 0.059 |
Variable | First FU | Second FU | p-Value |
---|---|---|---|
Pulmonary functional test | |||
VC (L) | 3.17 (3.16, 3.18) | 3.70 (3.17, 4.09) | 0.13 |
VC (%) | 98 (86, 109) | 101 (90, 111) | <0.001 |
TLC (L) | 5.69 (4.73, 6.21) | 5.93 (4.90, 6.54) | 0.002 |
TLC (%) | 96 (83, 115) | 94 (87, 105) | 0.9 |
DLCO (mL/min/mmHg) | 18 (12, 24) | 20 (16, 25) | 0.007 |
DLCO (%) | 72 (50, 84) | 78 (63, 94) | 0.007 |
KCO (L) | 68 (26, 113) | 4 (3, 4) | <0.001 |
MIP (cm H2O) | 44 (35, 60) | 79 (66, 94) | 0.13 |
MEP (cm H2O) | 65 (60, 76) | 91 (71, 105) | 0.9 |
Six-minute walking test | |||
Distance (m) | 435 (390, 480) | 435 (382, 458) | 0.7 |
Final saturation (%) | 96 (95, 97) | 96 (95, 96) | 0.6 |
Echocardiographic ventricular dysfunction | |||
LVGLS (%) | −18.5 (−20.4, −16.8) | −18.6 (−20.6, −17.4) | 0.7 |
RVFWS (%) | −24.3 (−27.5, −21.8) | −25.2 (−28.1, −22.0) | 0.4 |
Left ventricular subclinical dysfunction (LVGLS of >−18%) | 16 (36%) | 13 (30%) | 0.6 |
Right ventricular subclinical dysfunction (RVFWS of >−20%) | 9 (22%) | 4 (10%) | 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cecchetto, A.; Torreggiani, G.; Guarnieri, G.; Vianello, A.; Baroni, G.; Palermo, C.; Bertagna De Marchi, L.; Lorenzoni, G.; Bartolotta, P.; Bertaglia, E.; et al. Subclinical Myocardial Injury in Patients Recovered from COVID-19 Pneumonia: Predictors and Longitudinal Assessment. J. Cardiovasc. Dev. Dis. 2023, 10, 179. https://doi.org/10.3390/jcdd10040179
Cecchetto A, Torreggiani G, Guarnieri G, Vianello A, Baroni G, Palermo C, Bertagna De Marchi L, Lorenzoni G, Bartolotta P, Bertaglia E, et al. Subclinical Myocardial Injury in Patients Recovered from COVID-19 Pneumonia: Predictors and Longitudinal Assessment. Journal of Cardiovascular Development and Disease. 2023; 10(4):179. https://doi.org/10.3390/jcdd10040179
Chicago/Turabian StyleCecchetto, Antonella, Gianpaolo Torreggiani, Gabriella Guarnieri, Andrea Vianello, Giulia Baroni, Chiara Palermo, Leonardo Bertagna De Marchi, Giulia Lorenzoni, Patrizia Bartolotta, Emanuele Bertaglia, and et al. 2023. "Subclinical Myocardial Injury in Patients Recovered from COVID-19 Pneumonia: Predictors and Longitudinal Assessment" Journal of Cardiovascular Development and Disease 10, no. 4: 179. https://doi.org/10.3390/jcdd10040179
APA StyleCecchetto, A., Torreggiani, G., Guarnieri, G., Vianello, A., Baroni, G., Palermo, C., Bertagna De Marchi, L., Lorenzoni, G., Bartolotta, P., Bertaglia, E., Donato, F., Aruta, P., Iliceto, S., & Mele, D. (2023). Subclinical Myocardial Injury in Patients Recovered from COVID-19 Pneumonia: Predictors and Longitudinal Assessment. Journal of Cardiovascular Development and Disease, 10(4), 179. https://doi.org/10.3390/jcdd10040179