Thermodynamic Data of Fusarium oxysporum Grown on Different Substrates in Gold Mine Wastewater
Abstract
:1. Summary
2. Data Description
3. Methods
3.1. Sample Preparation
3.2. Thermal Analysis
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Du Plessis, C.; Barnard, P.; Muhlbauer, R.; Naldrett, K. Empirical model for the autotrophic biodegradation of thiocyanate in an activated sludge reactor. Lett. Appl. Microbiol. 2001, 32, 103–107. [Google Scholar] [CrossRef] [PubMed]
- Stott, M.B.; Franzmann, P.D.; Zappia, L.R.; Watling, H.R.; Quan, L.P.; Clark, B.J.; Houchin, M.R.; Miller, P.C.; Williams, T.L. Thiocyanate removal from saline cip process water by a rotating biological contactor, with reuse of the water for bioleaching. Hydrometallurgy 2001, 62, 93–105. [Google Scholar] [CrossRef]
- Huddy, R.J.; van Zyl, A.W.; van Hille, R.P.; Harrison, S.T.L. Characterisation of the complex microbial community associated with the aster™ thiocyanate biodegradation system. Miner. Eng. 2015, 76, 65–71. [Google Scholar] [CrossRef]
- Mekuto, L.; Ntwampe, S.; Jackson, V. Biodegradation of free cyanide and subsequent utilisation of biodegradation by-products by Bacillus consortia: Optimisation using response surface methodology. Environ. Sci. Pollut. Res. 2015, 22, 10434–10443. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Balomajumder, C. Equilibrium isotherm and kinetic studies for the simultaneous removal of phenol and cyanide by use of S. odorifera (mtcc 5700) immobilized on coconut shell activated carbon. Appl. Water. Sci. 2016, 1–15. [Google Scholar] [CrossRef]
- Akinpelu, E.A.; Ntwampe, S.K.; Mpongwana, N.; Nchu, F.; Ojumu, T.V. Biodegradation kinetics of free cyanide in Fusarium oxysporum-Beta vulgaris waste-metal (As, Cu, Fe, Pb, Zn) cultures under alkaline conditions. BioResources 2016, 11, 2470–2482. [Google Scholar] [CrossRef]
- Santos, B.A.Q.; Ntwampe, S.K.O.; Hamuel, J.; Muchatibaya, G. Application of Citrus sinensis solid waste as a pseudo-catalyst for free cyanide conversion under alkaline conditions. BioResources 2013, 8, 3461–3467. [Google Scholar] [CrossRef]
- Akinpelu, E.A.; Ntwampe, S.K.O.; Mekuto, L.; Itoba Tombo, E.F. In Optimizing the Bioremediation of Free Cyanide Containing Wastewater by Fusarium Oxysporum Grown on Beetroot Waste Using Response Surface Methodology. In Lecture Notes in Engineering and Computer Science, Proceedings of the World Congress on Engineering and Computer Science, San Francisco, CA, USA, 19–21 October 2016; Ao, S.I., Douglas, C., Grundfest, W.S., Eds.; Newswood Limited: San Francisco, CA, USA, 2016; pp. 664–670. [Google Scholar]
- Akinpelu, E.A.; Ntwampe, S.K.O.; Chen, B.H. Biological stoichiometry and bioenergetics of Fusarium oxysporum EKT01/02 proliferation using different substrates in cyanidation wastewater. Can. J. Chem. Eng. [CrossRef]
- Battley, E.H.; Putnam, R.L.; Boerio-Goates, J. Heat capacity measurements from 10 to 300 K and derived thermodynamic functions of lyophilized cells of saccharomyces cerevisiae including the absolute entropy and the entropy of formation at 298.15 K. Thermochim. Acta 1997, 298, 37–46. [Google Scholar] [CrossRef]
- Pyda, M. Conformational contribution to the heat capacity of the starch and water system. J. Polym. Sci. Part B Polym. Phys. 2001, 39, 3038–3054. [Google Scholar] [CrossRef]
- Pyda, M. Quantitative thermal analysis of carbohydrate-water systems. In The Nature of Biological Systems as Revealed by Thermal Methods; Lörinczy, D., Ed.; Springer Netherlands: Dordrecht, The Netherlands, 2005; pp. 307–332. [Google Scholar]
- Boerio-Goates, J. Heat-capacity measurements and thermodynamic functions of crystalline α-d-glucose at temperatures from 10 K to 340 K. J. Chem. Thermodyn. 1991, 23, 403–409. [Google Scholar] [CrossRef]
- Kabo, G.J.; Voitkevich, O.V.; Blokhin, A.V.; Kohut, S.V.; Stepurko, E.N.; Paulechka, Y.U. Thermodynamic properties of starch and glucose. J. Chem. Thermodyn. 2013, 59, 87–93. [Google Scholar] [CrossRef]
- Akinpelu, E.A.; Adetunji, A.T.; Ntwampe, S.K.O.; Nchu, F.; Mekuto, L. Biochemical characteristics of a free cyanide and total nitrogen assimilating Fusarium oxysporum ekt01/02 isolate from cyanide contaminated soil. Data Brief 2017, 14, 84–87. [Google Scholar] [CrossRef]
- Campos, M.G.; Pereira, P.; Roseiro, J.C. Packed-bed reactor for the integrated biodegradation of cyanide and formamide by immobilised Fusarium oxysporum ccmi 876 and Methylobacterium sp. RXM CCMI 908. Enzym. Microb. Technol. 2006, 38, 848–854. [Google Scholar] [CrossRef]
- Pereira, P.T.; Arrabaça, J.D.; Amaral-Collaço, M.T. Isolation, selection and characterization of a cyanide-degrading fungus from an industrial effluent. Int. Biodeterior. Biodegrad. 1996, 37, 45–52. [Google Scholar] [CrossRef]
- Battley, E.H. The thermodynamics of microbial growth. In Handbook of Thermal Analysis and Calorimetry; Kemp, R.B., Ed.; Elsevier: Amsterdam, The Netherlands, 1999; pp. 219–266. [Google Scholar]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akinpelu, E.A.; Ntwampe, S.K.O.; Mekuto, L.; Ojumu, T.V. Thermodynamic Data of Fusarium oxysporum Grown on Different Substrates in Gold Mine Wastewater. Data 2017, 2, 24. https://doi.org/10.3390/data2030024
Akinpelu EA, Ntwampe SKO, Mekuto L, Ojumu TV. Thermodynamic Data of Fusarium oxysporum Grown on Different Substrates in Gold Mine Wastewater. Data. 2017; 2(3):24. https://doi.org/10.3390/data2030024
Chicago/Turabian StyleAkinpelu, Enoch A., Seteno K. O. Ntwampe, Lukhanyo Mekuto, and Tunde V. Ojumu. 2017. "Thermodynamic Data of Fusarium oxysporum Grown on Different Substrates in Gold Mine Wastewater" Data 2, no. 3: 24. https://doi.org/10.3390/data2030024
APA StyleAkinpelu, E. A., Ntwampe, S. K. O., Mekuto, L., & Ojumu, T. V. (2017). Thermodynamic Data of Fusarium oxysporum Grown on Different Substrates in Gold Mine Wastewater. Data, 2(3), 24. https://doi.org/10.3390/data2030024