Previous Issue
Volume 11, April
 
 

Hydrology, Volume 11, Issue 5 (May 2024) – 7 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
30 pages, 1632 KiB  
Article
Enhancing Monthly Streamflow Prediction Using Meteorological Factors and Machine Learning Models in the Upper Colorado River Basin
by Saichand Thota, Ayman Nassar, Soukaina Filali Boubrahimi, Shah Muhammad Hamdi and Pouya Hosseinzadeh
Hydrology 2024, 11(5), 66; https://doi.org/10.3390/hydrology11050066 - 01 May 2024
Viewed by 220
Abstract
Streamflow prediction is crucial for planning future developments and safety measures along river basins, especially in the face of changing climate patterns. In this study, we utilized monthly streamflow data from the United States Bureau of Reclamation and meteorological data (snow water equivalent, [...] Read more.
Streamflow prediction is crucial for planning future developments and safety measures along river basins, especially in the face of changing climate patterns. In this study, we utilized monthly streamflow data from the United States Bureau of Reclamation and meteorological data (snow water equivalent, temperature, and precipitation) from the various weather monitoring stations of the Snow Telemetry Network within the Upper Colorado River Basin to forecast monthly streamflow at Lees Ferry, a specific location along the Colorado River in the basin. Four machine learning models—Random Forest Regression, Long short-term memory, Gated Recurrent Unit, and Seasonal AutoRegresive Integrated Moving Average—were trained using 30 years of monthly data (1991–2020), split into 80% for training (1991–2014) and 20% for testing (2015–2020). Initially, only historical streamflow data were used for predictions, followed by including meteorological factors to assess their impact on streamflow. Subsequently, sequence analysis was conducted to explore various input-output sequence window combinations. We then evaluated the influence of each factor on streamflow by testing all possible combinations to identify the optimal feature combination for prediction. Our results indicate that the Random Forest Regression model consistently outperformed others, especially after integrating all meteorological factors with historical streamflow data. The best performance was achieved with a 24-month look-back period to predict 12 months of streamflow, yielding a Root Mean Square Error of 2.25 and R-squared (R2) of 0.80. Finally, to assess model generalizability, we tested the best model at other locations—Greenwood Springs (Colorado River), Maybell (Yampa River), and Archuleta (San Juan) in the basin. Full article
17 pages, 4002 KiB  
Article
Use of Soil Moisture as an Indicator of Climate Change in the SUPer System
by Josicleda Domiciano Galvincio, Rodrigo de Queiroga Miranda and Gabrielly Gregorio da Luz
Hydrology 2024, 11(5), 65; https://doi.org/10.3390/hydrology11050065 - 30 Apr 2024
Viewed by 202
Abstract
Soil moisture can be an important indicator of climate change in humid and semi-arid areas. This indicator can more efficiently propose different public policies related to climate change than just using precipitation and temperature data. Given the above, the objective of this study [...] Read more.
Soil moisture can be an important indicator of climate change in humid and semi-arid areas. This indicator can more efficiently propose different public policies related to climate change than just using precipitation and temperature data. Given the above, the objective of this study is to evaluate changes in soil moisture in the state of Pernambuco during the period 1961–2021, using the System of Hydrological Response Units for Pernambuco. In this study, two river basins in the state of Pernambuco that represent the different climatic conditions of the state were chosen. The results show that in the coastal region there is a tendency towards more saturated soils, and in the semi-arid region there is a tendency towards drier soils. With these results, it is possible to conclude that public policy decisions for the economy, environment, and society must consider this vital water balance variable. Leveraging soil moisture and precipitation data makes it possible to differentiate between flood risks and landslide vulnerabilities, particularly in regions characterized by higher levels of rainfall. Monitoring soil water content in humid and semi-arid areas can significantly enhance early warning systems, thereby preventing loss of life and minimizing the socio-economic impacts of such natural events. As such, this study provides a holistic understanding of the relationship between climatic patterns, soil moisture dynamics, and the occurrence of droughts and floods, ultimately contributing to more effective disaster preparedness and response measures in Pernambuco and similar regions. Full article
(This article belongs to the Topic Hydrology and Water Resources Management)
22 pages, 6265 KiB  
Article
Hydrologic Sensitivity of a Critical Turkish Watershed to Inform Water Resource Management in an Altered Climate
by Furkan Yunus Emre Cevahir, Jennifer C. Adam, Mingliang Liu and Justin Sheffield
Hydrology 2024, 11(5), 64; https://doi.org/10.3390/hydrology11050064 - 30 Apr 2024
Viewed by 339
Abstract
This study introduces a novel sensitivity analysis approach to assess the resilience and susceptibility of hydrologic systems to the stresses of climate change, moving away from conventional top-down methodologies. By exploring the hydrological sensitivity of the upper Kızılırmak River basin using the Variable [...] Read more.
This study introduces a novel sensitivity analysis approach to assess the resilience and susceptibility of hydrologic systems to the stresses of climate change, moving away from conventional top-down methodologies. By exploring the hydrological sensitivity of the upper Kızılırmak River basin using the Variable Infiltration Capacity (VIC) hydrologic model, we employed a sensitivity-based approach as an alternative to the traditional Global Climate Model (GCM)-based methods, providing more insightful information for water managers. Considering the consistent projections of increasing temperature over this region in GCMs, the hydrologic system was perturbed to examine gradients of a more challenging climate characterized by warming and drying conditions. The sensitivity of streamflow, snow water equivalent, and evapotranspiration to temperature (T) and precipitation (P) variations under each perturbation or “reference” climate was quantified. Results indicate that streamflow responds to T negatively under all warming scenarios. As the reference climates become drier, streamflow sensitivity to P increases, indicating that meteorological drought impacts on water availability could be exacerbated. These results suggest that there will be heightened difficulty in managing water resources in the region if it undergoes both warming and drying due to the following setbacks: (1) water availability will shift away from the summer season of peak water demand due to the warming effects on the snowpack, (2) annual water availability will likely decrease due to a combination of warming and lower precipitation, and (3) streamflow sensitivity to hydroclimatic variability will increase, meaning that there will be more extreme impacts to water availability. Water managers will need to plan for a larger set of extreme conditions. Full article
(This article belongs to the Special Issue Runoff Modelling under Climate Change)
Show Figures

Figure 1

25 pages, 4642 KiB  
Article
A Comparative Analysis of Sediment Concentration Using Artificial Intelligence and Empirical Equations
by Muhammad Ashraf Khalid, Abdul Razzaq Ghumman and Ghufran Ahmed Pasha
Hydrology 2024, 11(5), 63; https://doi.org/10.3390/hydrology11050063 - 27 Apr 2024
Viewed by 256
Abstract
Morphological changes in canals are greatly influenced by sediment load dynamics, whose estimation is a challenging task because of the non-linear behavior of the sediment concentration variables. This study aims to compare different techniques including Artificial Intelligence Models (AIM) and empirical equations for [...] Read more.
Morphological changes in canals are greatly influenced by sediment load dynamics, whose estimation is a challenging task because of the non-linear behavior of the sediment concentration variables. This study aims to compare different techniques including Artificial Intelligence Models (AIM) and empirical equations for estimating sediment load in Upper Chenab Canal based on 10 years of sediment data from 2012 to 2022. The methodology involves utilization of a newly developed empirical equation, the Ackers and White formula and AIM including 20 neural networks with 10 training functions for both Double and Triple Layers, two Artificial Neuro-Fuzzy Inference System (ANFIS), Particle Swarm Optimization, and Ensemble Learning Random Forest models. Sensitivity analysis of sediment concentration variables has also been performed using various scenarios of input combinations in AIM. A state-of-the-art optimization technique has been used to identify the parameters of the empirical equation, and its performance is tested against AIM and the Ackers and White equation. To compare the performance of various models, four types of errors—correlation coefficient (R), T-Test, Analysis of Variance (ANOVA), and Taylor’s Diagram—have been used. The results of the study show successful application of Artificial Intelligence (AI) and empirical equations to capture the non-linear behavior of sediment concentration variables and indicate that, among all models, the ANFIS outperformed in simulating the total sediment load with a high R-value of 0.958. The performance of various models in simulating sediment concentration was assessed, with notable accuracy achieved by models AIM11 and AIM21. Moreover, the newly developed equation performed better (R = 0.92) compared to the Ackers and White formula (R = 0.88). In conclusion, the study provides valuable insights into sediment concentration dynamics in canals, highlighting the effectiveness of AI models and optimization techniques. It is suggested to incorporate other AI techniques and use multiple canals data in modeling for the future. Full article
Show Figures

Figure 1

18 pages, 14091 KiB  
Article
Hydropedological Characterization of a Coal Mining Waste Deposition Area Affected by Self-Burning
by Jorge Espinha Marques, Aracelis Narayan, Patrícia Santos, Joana Ribeiro, Sara C. Antunes, Armindo Melo, Fernando Rocha, Deolinda Flores and Catarina Mansilha
Hydrology 2024, 11(5), 62; https://doi.org/10.3390/hydrology11050062 - 25 Apr 2024
Viewed by 291
Abstract
Coal mining often produces severe environmental effects, including impacts on the soil system and, specifically, on hydropedological conditions that control the leaching of significant ions and Potentially Toxic Elements (PTEs). The research objective is to assess changes in the hydropedological conditions in an [...] Read more.
Coal mining often produces severe environmental effects, including impacts on the soil system and, specifically, on hydropedological conditions that control the leaching of significant ions and Potentially Toxic Elements (PTEs). The research objective is to assess changes in the hydropedological conditions in an area with a coal mining waste pile that underwent self-burning. An integrative approach was implemented, starting with the definition of hydropedological zoning based on field observations of soil formation factors (namely, parent material, relief, biological activity, anthropic influence, and time). The soil profile in each hydropedological zone was characterized regarding morphological features. The upper mineral horizons were sampled and characterized in terms of mineralogy and PTE geochemistry. Field measurements of unsaturated hydraulic conductivity, soil water content, and hydrophobicity were performed. Afterwards, the hydrogeochemistry of leachates was determined, and the soil leaching potential was evaluated. The research outcomes express substantial differences regarding the hydropedological zones: development of different soil profiles, diverse mineralogy and PTE geochemistry, higher unsaturated hydraulic conductivity and leaching of major ions, and PTEs in soils affected by coal mining activities. Finally, a Principal Component Analysis confirmed the existence of significant contrasts according to hydropedological zoning. Full article
(This article belongs to the Special Issue Novel Approaches in Contaminant Hydrology and Groundwater Remediation)
Show Figures

Figure 1

28 pages, 4677 KiB  
Review
Perspective of Hydrodynamics in Microbial-Induced Carbonate Precipitation: A Bibliometric Analysis and Review of Research Evolution
by Armstrong Ighodalo Omoregie, Tariq Ouahbi, Dominic Ek Leong Ong, Hazlami Fikri Basri, Lin Sze Wong and Jibril Adewale Bamgbade
Hydrology 2024, 11(5), 61; https://doi.org/10.3390/hydrology11050061 - 25 Apr 2024
Viewed by 642
Abstract
Microbial-induced carbonate precipitation (MICP) is a promising process with applications in various industries, including soil improvement, bioremediation, and concrete repair. However, comprehensive bibliometric analyses focusing on MICP research in hydrodynamics are lacking. This study analyses 1098 articles from the Scopus database (1999–2024) using [...] Read more.
Microbial-induced carbonate precipitation (MICP) is a promising process with applications in various industries, including soil improvement, bioremediation, and concrete repair. However, comprehensive bibliometric analyses focusing on MICP research in hydrodynamics are lacking. This study analyses 1098 articles from the Scopus database (1999–2024) using VOSviewer and R Studio, identifying information on publications, citations, authors, countries, journals, keyword hotspots, and research terms. Global participation from 66 countries is noted, with China and the United States leading in terms of contributions. The top-cited papers discuss the utilisation of ureolytic microorganisms to enhance soil properties, MICP mechanisms, concrete deterioration mitigation, soil and groundwater flow enhancement, biomineral distribution, and MICP treatment effects on soil hydraulic properties under varying conditions. Keywords like calcium carbonate, permeability, and Sporosarcina pasteurii are pivotal in MICP research. The co-occurrence analysis reveals thematic clusters like microbial cementation and geological properties, advancing our understanding of MICP’s interdisciplinary nature and its role in addressing environmental challenges. Full article
(This article belongs to the Section Soil and Hydrology)
Show Figures

Figure 1

22 pages, 22365 KiB  
Article
A Simulation–Optimization Model for Optimal Aquifer Remediation, Using Genetic Algorithms and MODFLOW
by Yiannis Ν. Kontos
Hydrology 2024, 11(5), 60; https://doi.org/10.3390/hydrology11050060 - 24 Apr 2024
Viewed by 671
Abstract
This paper investigates the optimal remediation process in an aquifer using Modflow 6 software and genetic algorithms. A theoretical confined aquifer has been polluted over a long period of time by unnoticed leakage in a pipeline conveying leachate from an adjacent landfill to [...] Read more.
This paper investigates the optimal remediation process in an aquifer using Modflow 6 software and genetic algorithms. A theoretical confined aquifer has been polluted over a long period of time by unnoticed leakage in a pipeline conveying leachate from an adjacent landfill to a wastewater treatment plant. When the extended leakage and groundwater pollution are discovered, the optimal planning of the remediation strategy is investigated using the pump-and-treat method or/and hydrodynamic control of the pollution. The practical goal is to find the optimal locations and flow rates of two additional pumping wells, which will pump the polluted water or/and control pollution, protecting an existing drinking water pumping well, securing its fully operational mode even during the remediation process with the minimum possible cost, simply represented by the pumped water volume of the additional wells. The remediation process is considered complete when the maximum concentration in the aquifer drops below a certain limit. The Modflow software (handled by the Flopy Python package) simulates the flow field and advective–dispersive mass transport, and a genetic algorithm is used as the optimization tool. The coupled simulation–optimization model, Modflow-GA, complemented by a sophisticated post-processing results analysis, provides optimal and alternate sub-optimal remediation strategies for the decision makers to select from. Full article
(This article belongs to the Special Issue Groundwater Pollution: Sources, Mechanisms, and Prevention)
Show Figures

Figure 1

Previous Issue
Back to TopTop