Central Composite Design, Kinetic Model, Thermodynamics, and Chemical Composition of Pomelo (Citrus Maxima (Burm.) Merr.) Essential Oil Extraction by Steam Distillation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extraction of Pomelo Essential Oil
2.2.1. Steam Distillation
2.2.2. Optimized by RSM
2.2.3. Kinetics of Essential Oil Extraction
- (1)
- Washing: essential oil obtained from the surface of raw materials
- (2)
- Diffusion: essential oil is diffused from the inside of the material to the surface of the material, which comprises two processes described as follows. The first one is unhindered diffusion, involving in a broken vesicle of essential oils, unimpeded by membranes or other barriers presented in the material; the second one is hindered fiffusion, involving in the transfer of essential oils across the membrane which is intact, not disrupted.
2.2.4. Statistical Evaluation
2.2.5. Analysis of Essential Oil
3. Results and Discussion
3.1. Effect of Facctors on Extraction by Steam Distillation
3.2. Optimization of Essential Oils Extraction with RSM
3.2.1. Suitability of the Model
3.2.2. Process Optimization
3.2.3. Verification of Optimal Condition
3.3. Kinetic Model Study
3.4. Activity Energy
3.5. Thermodynamic Analysis
3.6. GC-MS Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burana-osot, J.; Soonthornchareonnon, N.; Chaidedgumjorn, A.; Hosoyama, S.; Toida, T. Determination of Galacturonic Acid from Pomelo Pectin in Term of Galactose by HPAEC with Fluorescence Detection. Carbohydr. Polym. 2010, 81, 461–465. [Google Scholar] [CrossRef]
- Dao, T.P.; Tran, T.H.; Nguyen, D.T.; Nguyen, D.C.; Nguyen, D.H.; Hong Le, N.T.; Sy, D.T.; Thanh Huong, N.T.; Minh, B.L. Application of Response Surface Methodology for the Optimization of Essential Oils from Pomelo [Citrus Grandis (L.) Osbeck] Leaves Using Microwave-Assisted Hydrodistillation Method. Asian J. Chem. 2019, 31, 1639–1642. [Google Scholar] [CrossRef]
- Tan, Y.M.; Lim, S.H.; Tay, B.Y.; Lee, M.W.; Thian, E.S. Functional Chitosan-Based Grapefruit Seed Extract Composite Films for Applications in Food Packaging Technology. Mater. Res. Bull. 2015, 69, 142–146. [Google Scholar] [CrossRef]
- Sugimoto, N.; Tada, A.; Kuroyanagi, M.; Yoneda, Y.; Yun, Y.S.; Kunugi, A.; Sato, K.; Yamazaki, T.; Tanamoto, K. Survey of Synthetic Disinfectants in Grapefruit Seed Extract and Its Compounded Products. J. Food Hyg. Soc. Jpn. 2008, 49, 56–62. [Google Scholar] [CrossRef] [Green Version]
- Long, C. Study on technology of supercritical fluid extraction of essential oil from shaddock peel. Beverage Ind. 2007, 7. Available online: https://en.cnki.com.cn/Article_en/CJFDTotal-RYLG200707004.htm (accessed on 18 November 2021).
- Uysal, B.; Sozmen, F.; Aktas, O.; Oksal, B.S.; Kose, E.O. Essential Oil Composition and Antibacterial Activity of the Grapefruit (Citrus Paradisi. L) Peel Essential Oils Obtained by Solvent-Free Microwave Extraction: Comparison with Hydrodistillation. Int. J. Food Sci. Technol. 2011, 46, 1455–1461. [Google Scholar] [CrossRef]
- Darjazi, B.B. Compilation of peel components of Pummelo (Citrus grandis) obtained using cold-press and hydrodistillation method. J. Life Sci. Biomed. 2014, 5, 71–77. [Google Scholar]
- Dao, T.P.; Do, H.T.; Le, Q.K.; Gia Phap, N.V.; Bach, L.G.; Muoi, N.V.; Cang, M.H. Kinetic Studies on Extraction of Essential Oil from Lemongrass Leaves (Cymbopogon Citratus) by Steam Distillation Industrial Scale. Asian J. Chem. 2020, 32, 1399–1403. [Google Scholar] [CrossRef]
- Tran, T.H.; Ha, L.K.; Nguyen, D.C.; Dao, T.P.; Nhan, L.T.H.; Nguyen, D.H.; Nguyen, T.D.; Vo, D.-V.N.; Tran, Q.T.; Bach, L.G. The Study on Extraction Process and Analysis of Components in Essential Oils of Black Pepper (Piper Nigrum L.) Seeds Harvested in Gia Lai Province, Vietnam. Processes 2019, 7, 56. [Google Scholar] [CrossRef] [Green Version]
- Dao, T.P.; Chinh Nguyen, D.; Hien Tran, T.; Van Thinh, P.; Quang Hieu, V.; Vo Nguyen, D.V.; Duy Nguyen, T.; Giang Bach, L. Modeling and optimization of the orange leaves oil extraction process by microwave-assisted hydro-distillation: The response surface method based on the central composite approach (rsm-ccd model). RJC 2019, 12, 666–676. [Google Scholar] [CrossRef]
- Milojević, S.Ž.; Stojanović, T.D.; Palić, R.; Lazić, M.L.; Veljković, V.B. Kinetics of Distillation of Essential Oil from Comminuted Ripe Juniper (Juniperus Communis L.) Berries. Biochem. Eng. 2008, 39, 547–553. [Google Scholar] [CrossRef]
- Desai, M.A.; Parikh, J.; De, A.K. Modelling and Optimization Studies on Extraction of Lemongrass Oil from Cymbopogon Flexuosus (Steud.) Wats. Chem. Eng. Res. Des. 2014, 92, 793–803. [Google Scholar] [CrossRef]
- Milojevic, S.; Radosavljevic, D.; Pavicevic, V.; Pejanovic, S.; Veljkovic, V. Modeling the Kinetics of Essential Oil Hydrodistillation from Plant Materials. Hem. Ind. 2013, 67, 843–859. [Google Scholar] [CrossRef] [Green Version]
- Marković, M.S.; Radosavljević, D.B.; Pavićević, V.P.; Ristić, M.S.; Milojević, S.Ž.; Bošković-Vragolović, N.M.; Veljković, V.B. Influence of Common Juniper Berries Pretreatment on the Essential Oil Yield, Chemical Composition and Extraction Kinetics of Classical and Microwave-Assisted Hydrodistillation. Ind. Crop. Prod. 2018, 122, 402–413. [Google Scholar] [CrossRef]
- Marković, M.S.; Milojević, S.Ž.; Bošković-Vragolović, N.M.; Pavićević, V.P.; Babincev, L.M.; Veljković, V.B. A New Kinetic Model for the Common Juniper Essenstial Oil Extraction by Microwave Hydrodistillation. Chin. J. Chem. Eng. 2019, 27, 605–612. [Google Scholar] [CrossRef]
- Dao, T.P.; Kha, C.T.; Xuan, P.H.; Tran, T.T. Extraction Process Optimization and Compositional Determination of the Essential Oil from Pomelo (Citrus Grandis L.) Grown in Tien Giang Province, Vietnam. NVEO 2020, 7, 26–33. [Google Scholar] [CrossRef]
- Dao, T.P.; Tran, T.H.; Quyen Ngo, T.C.; Kieu Linh, H.T.; Yen Trung, L.N.; Danh, V.T.; Le Ngoc, T.T.; Yen Pham, N.D.; Quan, P.M.; Toan, T.Q. Extraction of Essential Oils from Vietnam’s Orange (Citrus Sinensis) Peels by Hydrodistillation: Modeling and Process Optimization. Asian J. Chem. 2019, 31, 2827–2833. [Google Scholar] [CrossRef]
- Ngo, T.C.Q.; Dao, T.P.; Tran, T.H.; Le, T.H.N.; Pham, M.Q.; Nguyen, N.H.; Tran, Q.T. Application of Response Surface Methodology in the Process of Extracting Essential Oil from the Calamondin (Citrus Microcarpa) Peels. IOP Conf. Ser. Mater. Sci. Eng. 2020, 736, 022062. [Google Scholar] [CrossRef]
- Phat, D.T.; Quyen, N.T.C.; Minh, P.T.H.; Huyen, L.V. Modeling the Kinetics of Essential Oil Hydrodistillation from Vietnamese Ginger (Zingiber Officinale). IOP Conf. Ser. Mater. Sci. Eng. 2020, 991, 012108. [Google Scholar] [CrossRef]
- Dao, P.T.; Tran, N.Y.T.; Tran, Q.N.; Bach, G.L.; Lam, T.V. Kinetics of Pilot-Scale Essential Oil Extraction from Pomelo (Citrus Maxima) Peels: Comparison between Linear and Nonlinear Models. Alex. Eng. J. 2021, S1110016821004701. [Google Scholar] [CrossRef]
- Alam, P.N.; Husin, H.; Asnawi, T.M. Adisalamun Extraction of Citral Oil from Lemongrass (Cymbopogon Citratus) by Steam-Water Distillation Technique. IOP Conf. Ser. Mater. Sci. Eng. 2018, 345, 012022. [Google Scholar] [CrossRef] [Green Version]
- Prasad, D.; Prasad, B.; Prasad, D.; Shetty, P.; Kumar, K. GC-MS Compositional Analysis of Essential Oil of Leaf and Fruit Rind of Citrus Maxima (Burm.) Merr. from Coastal Karnataka, India. J. Appl. Pharm. Sci. 2016, 6, 68–72. [Google Scholar] [CrossRef] [Green Version]
- Stanisavljević, I.T.; Lazić, M.L.; Veljković, V.B.; Stojičević, S.S.; Veličković, D.T.; Ristić, M.S. Kinetics of Hydrodistillation and Chemical Composition of Essential Oil from Cherry Laurel (Prunus Laurocerasus L. Var. Serbica Pančić) Leaves. J. Essent. Oil Res. 2010, 22, 564–567. [Google Scholar] [CrossRef]
- Pham, T.N.; Nguyen, V.T.; Toan, T.Q.; Cang, M.H.; Bach, L.G.; Van Muoi, N. Effects of Various Processing Parameters on Polyphenols, Flavonoids, and Antioxidant Activities of Codonopsis Javanica Root Extract. Nat. Prod. Commun. 2020, 15, 1934578X2095327. [Google Scholar] [CrossRef]
- Tran, T.Y.N.; Dang, T.T.; Do, T.N.; Pham, V.T.; Do, V.L.; Chung, T.P.T.; Nguyen, N.Q.; Tran, B.L.; Le, D.T.; Dao, T.P. Optimization of the Cold Drying Process of Mango (Mangifera Indica L.) Tu Quy Variety by Response Surface Methodology. Food Res. 2021, 5, 386–393. [Google Scholar] [CrossRef]
- Rowshan, V.; Bahmanzadegan, A.; Saharkhiz, M.J. Influence of Storage Conditions on the Essential Oil Composition of Thymus Daenensis Celak. Ind. Crops Prod. 2013, 49, 97–101. [Google Scholar] [CrossRef] [Green Version]
- Tran, T.H.; Nguyen, H.H.H.; Nguyen, D.C.; Nguyen, T.Q.; Tan, H.; Nhan, L.T.H.; Nguyen, D.H.; Tran, L.D.; Do, S.T.; Nguyen, T.D. Optimization of Microwave-Assisted Extraction of Essential Oil from Vietnamese Basil (Ocimum basilicum L.) Using Response Surface Methodology. Processes 2018, 6, 206. [Google Scholar] [CrossRef] [Green Version]
- Hien, T.T.; Nhan, N.P.T.; Trinh, N.D.; Ho, V.T.T.; Bach, L.G. Optimizing the Pomelo Oils Extraction Process by Microwave-Assisted Hydro-Distillation Using Soft Computing Approaches. SSP 2018, 279, 217–221. [Google Scholar] [CrossRef]
- Mateus, E.; Lopes, C.; Nogueira, T.; Lourenço, J.; Curto, M. Pilot Steam Distillation of Rosemary (Rosmarinus Officinalis L.) from Portugal. Silva Lusit. 2006, 14, 203–217. [Google Scholar]
- Charchari, S.; Hamadi, S. Kinetic Study of Artemisia Judaica L. Essential Oil Steam Distillation. J. Essent. Oil-Bear Plants 2007, 10, 304–309. [Google Scholar] [CrossRef]
- Kusuma, H.S.; Mahfud, M. Comparison of kinetic models of oil extraction from sandalwood by microwave-assisted hydrodistillation. Int. Food Res. J. 2017, 24, 1697–1702. [Google Scholar]
- Reinoso, B.D.; Muñoz, M.J.G.; González, H.D. Chapter 1—Introduction. In Water Extraction of Bioactive Compounds; González, H.H., Muñoz, M.J.G., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1–50. ISBN 9780128093801. [Google Scholar]
- Mohamad, M.; Ali, M.W.; Ripin, A.; Ahmad, A. Effect of Extraction Process Parameters on the Yield of Bioactive Compounds from the Roots of Eurycoma Longifolia. J. Teknol. 2013, 60. [Google Scholar] [CrossRef] [Green Version]
- Man, H.C.; Hamzah, M.H.; Jamaludin, H.; Abidin, Z.Z. Preliminary Study: Kinetics of Oil Extraction from Citronella Grass by Ohmic Heated Hydro Distillation. APCBEE Procedia 2012, 3, 124–128. [Google Scholar] [CrossRef] [Green Version]
- Agu, C.M.; Agulanna, A.C. Kinetics and Thermodynamics of Oil Extracted from Amaranth. In Nutritional Value of Amaranth; Waisundara, V.Y., Ed.; IntechOpen: London, UK, 2020; ISBN 9781838800833. [Google Scholar]
- Chen, Q.; Hu, Z.; Yao, F.Y.-D.; Liang, H. Study of Two-Stage Microwave Extraction of Essential Oil and Pectin from Pomelo Peels. LWT Food Sci. Technol. 2016, 66, 538–545. [Google Scholar] [CrossRef]
- Santos, S.B. dos Martins, M.A.; Caneschi, A.L.; Aguilar, P.R.M.; Coimbra, J.S.D.R. Kinetics and Thermodynamics of Oil Extraction from Jatropha Curcas L. Using Ethanol as a Solvent. Int. J. Chem. Eng. 2015, 2015, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Abed, K.M.; Kurji, B.M.; Rashid, S.A.; Abdulmajeed, B.A. Kinetics and thermodynamics of peppermint oil extraction from peppermint leaves. IJCPE 2019, 20, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Meziane, S.; Kadi, H. Kinetics and Thermodynamics of Oil Extraction from Olive Cake. J. Am. Oil Chem. Soc. 2008, 85, 391–396. [Google Scholar] [CrossRef]
- Chen, G.-W.; Lin, Y.-H.; Lin, C.-H.; Jen, H.-C. Antibacterial Activity of Emulsified Pomelo (Citrus Grandis Osbeck) Peel Oil and Water-Soluble Chitosan on Staphylococcus Aureus and Escherichia Coli. Molecules 2018, 23, 840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Surendran, S.; Qassadi, F.; Surendran, G.; Lilley, D.; Heinrich, M. Myrcene—What Are the Potential Health Benefits of This Flavouring and Aroma Agent? Front. Nutr. 2021, 8, 400. [Google Scholar] [CrossRef]
- Baccati, C.; Gibernau, M.; Paoli, M.; Ollitrault, P.; Tomi, F.; Luro, F. Chemical Variability of Peel and Leaf Essential Oils in the Citrus Subgenus Papeda (Swingle) and Few Relatives. Plants 2021, 10, 1117. [Google Scholar] [CrossRef]
No. | Code | Y (%, mL/100 g) | No. | Code | Y (%, mL/100 g) | ||||
---|---|---|---|---|---|---|---|---|---|
A | B | C | A | B | C | ||||
1 | −1 | −1 | −1 | 11 | 0 | −α | 0 | ||
2 | −1 | −1 | +1 | 12 | 0 | +α | 0 | ||
3 | −1 | +1 | −1 | 13 | 0 | 0 | −α | ||
4 | −1 | +1 | +1 | 14 | 0 | 0 | +α | ||
5 | +1 | −1 | −1 | 15 | 0 | 0 | 0 | ||
6 | +1 | −1 | +1 | 16 | 0 | 0 | 0 | ||
7 | +1 | +1 | −1 | 17 | 0 | 0 | 0 | ||
8 | +1 | +1 | +1 | 18 | 0 | 0 | 0 | ||
9 | −α | 0 | 0 | 19 | 0 | 0 | 0 | ||
10 | +α | 0 | 0 | 20 | 0 | 0 | 0 |
Code | Levels | ||||
---|---|---|---|---|---|
−α | −1 | 0 | +1 | +α | |
A | 163 | 300 | 500 | 700 | 836 |
B | 1.60 | 1.80 | 2.10 | 2.40 | 2.60 |
C | 40 | 60 | 90 | 120 | 140 |
No. | Run | Code | Yield (%, mL/100 g) | |||
---|---|---|---|---|---|---|
A: Mass (g) | B: Steam Flow Rate (mL/min) | C: Extraction Time (min) | Actual | Residual | ||
1 | 3 | 300 | 1.80 | 60 | 4.9640 | 0.1567 |
2 | 14 | 700 | 1.80 | 60 | 4.5669 | 0.0302 |
3 | 13 | 300 | 2.40 | 60 | 5.1625 | 0.0386 |
4 | 8 | 700 | 2.40 | 60 | 4.9640 | −0.0181 |
5 | 6 | 300 | 1.80 | 120 | 5.2784 | −0.0645 |
6 | 10 | 700 | 1.80 | 120 | 4.6539 | 0.0571 |
7 | 20 | 300 | 2.40 | 120 | 5.6530 | −0.0765 |
8 | 16 | 700 | 2.40 | 120 | 5.6235 | 0.0006 |
9 | 5 | 163 | 2.10 | 90 | 5.9062 | −0.0645 |
10 | 7 | 836 | 2.10 | 90 | 5.0829 | −0.0252 |
11 | 12 | 500 | 1.60 | 90 | 4.1334 | −0.1422 |
12 | 19 | 500 | 2.60 | 90 | 4.8595 | 0.1308 |
13 | 15 | 500 | 2.10 | 40 | 5.2734 | 0.0960 |
14 | 4 | 500 | 2.10 | 140 | 5.8649 | −0.1135 |
15 | 17 | 500 | 2.10 | 90 | 6.2500 | 0.0996 |
16 | 11 | 500 | 2.10 | 90 | 6.0546 | −0.0054 |
17 | 2 | 500 | 2.10 | 90 | 6.2757 | −0.0748 |
18 | 1 | 500 | 2.10 | 90 | 5.9770 | 0.0077 |
19 | 18 | 500 | 2.10 | 90 | 5.9770 | −0.0138 |
20 | 9 | 500 | 2.10 | 90 | 6.1761 | −0.1422 |
Sum of Squares | df | Mean Square | F-Value | p-Value | ||
---|---|---|---|---|---|---|
Model | 7.32 | 9 | 0.8137 | 58.09 | <0.0001 | significant |
A | 0.5081 | 1 | 0.5081 | 36.27 | 0.0001 | |
B | 0.7317 | 1 | 0.7317 | 52.23 | <0.0001 | |
C | 0.4748 | 1 | 0.4748 | 33.89 | 0.0002 | |
AB | 0.0787 | 1 | 0.0787 | 5.62 | 0.0392 | |
AC | 0.0004 | 1 | 0.0004 | 0.0304 | 0.8652 | |
BC | 0.0700 | 1 | 0.0700 | 5.00 | 0.0494 | |
A2 | 0.7308 | 1 | 0.7308 | 52.17 | <0.0001 | |
B2 | 4.82 | 1 | 4.82 | 343.78 | <0.0001 | |
C2 | 0.5696 | 1 | 0.5696 | 40.66 | <0.0001 | |
Residual | 0.1401 | 10 | 0.0140 | |||
Lack of Fit | 0.0506 | 5 | 0.0101 | 0.5652 | 0.7268 | not significant |
Pure Error | 0.0895 | 5 | 0.0179 | |||
Cor Total | 7.46 | 19 | ||||
R2 0.9812 | Adjusted R2 0.9643 | Predicted R2 0.9271 | Adeq Precision 24.1878 |
No. | Model | Rate (mL/min) | fw | fd1 | fd2 | kw | kd1 (min−1) | kd2 (min−1) | R2 | %q | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Simple diffusion without washing | 1.8 | 4.80 | 4.68 | - | - | - | - | 0.0617 | - | 0.98932 | 2.50 |
2.1 | 6.37 | 6.31 | - | - | - | - | 0.0454 | - | 0.9831 | 0.94 | ||
2.4 | 6.13 | 6.12 | - | - | - | - | 0.0539 | - | 0.9987 | 0.16 | ||
3.4 | 6.16 | 6.09 | - | - | - | - | 0.0754 | - | 0.9907 | 1.14 | ||
2 | Instantaneous washing followed by diffusion | 1.8 | 4.80 | 4.68 | 0.0223 | 0.0600 | - | 0.98886 | 2.5 | |||
2.1 | 6.37 | 6.35 | 0.0437 | - | - | - | 0.0426 | - | 0.98383 | 0.31 | ||
2.4 | 6.13 | 6.12 | 5.51 × 10−4 | - | - | - | 0.0539 | - | 0.99855 | 0.16 | ||
2.7 | 6.16 | 6.10 | 0.0169 | - | - | - | 0.0739 | - | 0.98979 | 0.97 | ||
3 | Simultaneous washing and unhindered diffusion | 1.8 | 4.80 | 4.90 | 0.3880 | - | - | 0.0281 | 0.1308 | - | 0.99884 | 2.08 |
2.1 | 6.37 | 6.76 | 0.3412 | - | - | 0.1515 | 0.0236 | - | 0.99576 | 3.92 | ||
2.4 | 6.13 | 6.38 | 0.8884 | - | - | 0.0589 | 0.0112 | - | 0.99876 | 4.08 | ||
3.4 | 6.16 | 6.29 | 0.3023 | - | - | 3.0759 | 0.0482 | - | 0.99928 | 2.11 | ||
4 | Simultaneous washing, unhindered diffusion and hindered diffusion | 1.8 | 4.80 | 4.90 | 0.4882 | 0.5122 | 1.95 × 10−9 | 0.0281 | 0.1309 | 0.5609 | 0.99826 | 2.08 |
2.1 | 6.37 | 6.62 | 0.7502 | 0.2498 | 9.33 × 10−9 | 0.029 | 3.0357 | 0.0289 | 0.9980 | 3.93 | ||
2.4 | 6.13 | 6.13 | 0.9938 | 0.0062 | 3.85 × 10−9 | 0.0535 | 2.5181 | 0.1291 | 0.9974 | 0 | ||
3.4 | 6.16 | 5.5 | 0.42677 | 10.71 |
Parameters | Step | |
---|---|---|
Washing | Diffusion 1 | |
Ea (kJ.mol−1) | 167.43 | 96.25 |
A (min−1) | 47.79 | 31.91 |
R2 | 0.5717 | 0.7154 |
T (K) | Q (Liquid) (%) | Q (Solid) (%) | |||
---|---|---|---|---|---|
393 | 4.8007 | 2.625 | −35.02 | ||
403 | 6.373 | 1.0529 | −0.2469 | 89.1095 | −34.93 |
413 | 6.125 | 1.301 | −35.02 | ||
423 | 6.1574 | 1.1685 | −35.02 |
Peak | Retention Time (min) | Compound | Percent |
---|---|---|---|
1 | 7.157 | 1R-a-Pinene | 0.75 |
2 | 8.861 | Sabinene | 0.19 |
3 | 8.955 | β-Pinene | 0.07 |
4 | 9.802 | β-Myrcene | 1.31 |
5 | 10.346 | α-Phellandrene | 0.69 |
6 | 11.705 | D-Limonene | 97.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dao, T.P.; Nguyen, T.V.; Tran, T.Y.N.; Le, X.T.; An, T.N.T.; Anh, N.H.T.; Bach, L.G. Central Composite Design, Kinetic Model, Thermodynamics, and Chemical Composition of Pomelo (Citrus Maxima (Burm.) Merr.) Essential Oil Extraction by Steam Distillation. Processes 2021, 9, 2075. https://doi.org/10.3390/pr9112075
Dao TP, Nguyen TV, Tran TYN, Le XT, An TNT, Anh NHT, Bach LG. Central Composite Design, Kinetic Model, Thermodynamics, and Chemical Composition of Pomelo (Citrus Maxima (Burm.) Merr.) Essential Oil Extraction by Steam Distillation. Processes. 2021; 9(11):2075. https://doi.org/10.3390/pr9112075
Chicago/Turabian StyleDao, Tan Phat, Thanh Viet Nguyen, Thi Yen Nhi Tran, Xuan Tien Le, Ton Nu Thuy An, Nguyen Huu Thuan Anh, and Long Giang Bach. 2021. "Central Composite Design, Kinetic Model, Thermodynamics, and Chemical Composition of Pomelo (Citrus Maxima (Burm.) Merr.) Essential Oil Extraction by Steam Distillation" Processes 9, no. 11: 2075. https://doi.org/10.3390/pr9112075