Simulation of Ni2+ Chelating Peptides Separation in IMAC: Prediction of Langmuir Isotherm Parameters from SPR Affinity Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Simulation Program
2.1.1. Axially Dispersed Plug Flow Model
2.1.2. Adsorption Isotherm
2.1.3. Initial and Boundaries Conditions for Solving the Transport Dispersive Model and Other Parameters for Chromatography Modeling
2.1.4. Study of the Concentration Profiles Obtained at the Column Outlet in the Case of Injections of Variable Concentration and/or Volume
2.2. Adaptation of Affinity Constant KA and Maximum Response Rmax Obtained in SPR for Peptide Concentration Profile Simulation in IMAC
2.2.1. Peptides Investigated and Their Initial Binding Parameters Used for Initial Simulation
2.2.2. Adjustment of qmax,IMAC Values to Improve Simulation of Peptides’ Concentration Profiles in IMAC
2.2.2.1. Determination of a Correction Factor Applied to qmax of Each Peptide
2.2.2.2. Determination of a Mean Correction Factor Applied to Peptide qmax
2.2.2.3. Experimental Measurement of the of Imidazole and Determination of a New Correction Factor Applied to the qmax of Each Peptide
- Determination of a specific qmax,IMAC for imidazole from experimental imidazole retention time
- Determination of a new correction factor specific to each peptide to be applied to qmax for each peptide
2.3. Experimental IMAC Used to Evaluate the Validity of Peptides’ Simulated Concentration Profiles
3. Results and Discussion
3.1. Simulation of Peptide Concentration Profile in Isocratic Elution Mode: Effect of Various Parameters
3.1.1. Effect of Injected Volume of the Peptide
3.1.2. Effect of the Peptide Concentration
- Example of HW peptide
- Determination of the saturation range and linearity range of concentration
3.1.3. Effect of Imidazole Concentration
3.2. Simulation of Peptide Concentration Profile in Gradient Elution Mode
3.2.1. Initial Simulation
3.2.2. Simulation of Peptide Concentration Profile Using Adjusted qmax,IMAC
3.2.2.1. Integration of a Specific Correction Factor on qmax of Each Peptide and Imidazole
3.2.2.2. Integration of a Mean Correction Factor on qmax of All Peptides and Imidazole
3.2.2.3. Evaluation of the Use of Experimental qmax,IMAC of Imidazole Combined with the Integration of a New Correction Factor on qmax of Each Peptide
4. Conclusions and Perspectives
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, L.; Harnedy, P.A.; Li, B.; Hou, H.; Zhang, Z.; Zhao, X.; FitzGerald, R.J. Food protein-derived chelating peptides: Biofunctional ingredients for dietary mineral bioavailability enhancement. Trends Food Sci. Technol. 2014, 37, 92–105. [Google Scholar] [CrossRef]
- Hou, Y.; Wu, Z.; Dai, Z.; Wang, G.; Wu, G. Protein hydrolysates in animal nutrition: Industrial production, bioactive peptides, and functional significance. J. Anim. Sci. Biotechnol. 2017, 8, 24. [Google Scholar] [CrossRef] [PubMed]
- Yesiltas, B.; García-Moreno, P.J.; Gregersen, S.; Olsen, T.H.; Jones, N.C.; Hoffmann, S.V.; Marcatili, P.; Overgaard, M.T.; Hansen, E.B.; Jacobsen, C. Antioxidant peptides derived from potato, seaweed, microbial and spinach proteins: Oxidative stability of 5% fish oil-in-water emulsions. Food Chem. 2022, 385, 132699. [Google Scholar] [CrossRef] [PubMed]
- Udechukwu, M.C.; Collins, S.A.; Udenigwe, C.C. Prospects of enhancing dietary zinc bioavailability with food-derived zinc-chelating peptides. Food Funct. 2016, 7, 4137–4144. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Yang, Y.; Sun, N.; Bao, Z.; Lin, S. Food protein-derived iron-chelating peptides: The binding mode and promotive effects of iron bioavailability. Food Res. Int. 2020, 131, 108976. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Hou, H.; Li, B.; Zhang, Z.; Wang, S.; Zhao, X. Preparation, isolation and identification of iron-chelating peptides derived from Alaska pollock skin. Process Biochem. 2013, 48, 988–993. [Google Scholar] [CrossRef]
- Lv, Y.; Liu, Q.; Bao, X.; Tang, W.; Yang, B.; Guo, S. Identification and Characteristics of Iron-Chelating Peptides from Soybean Protein Hydrolysates Using IMAC-Fe3+. J. Agric. Food Chem. 2009, 57, 4593–4597. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, B.; Ao, J. Separation and identification of zinc-chelating peptides from sesame protein hydrolysate using IMAC-Zn2+ and LC–MS/MS. Food Chem. 2012, 134, 1231–1238. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, R.; Martín Del Valle, E.M.; Galán, M.A. Immobilized Metal-Ion Affinity Chromatography: Status and Trends. Sep. Purif. Rev. 2007, 36, 71–111. [Google Scholar] [CrossRef]
- Pearson, R.G. Hard and Soft Acids and Bases. J. Am. Chem. Soc. 1963, 85, 3533–3539. [Google Scholar] [CrossRef]
- Becker, K.; Van Alstine, J.; Bülow, L. Multipurpose peptide tags for protein isolation. J. Chromatogr. A 2008, 1202, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Ueda, E.K.M.; Gout, P.W.; Morganti, L. Current and prospective applications of metal ion–protein binding. J. Chromatogr. A 2003, 988, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Guiochon, G.; Shirazi, D.G.; Felinger, A.; Katti, A.M. Fundamentals of Preparative and Nonlinear Chromatography, 2nd ed.; Academic Press: Boston, MA, USA, 2006; ISBN 978-0-12-370537-2. [Google Scholar]
- Seidel-Morgenstern, A. Experimental determination of single solute and competitive adsorption isotherms. J. Chromatogr. A 2004, 1037, 255–272. [Google Scholar] [CrossRef] [PubMed]
- Lenz, K.; Beste, Y.A.; Arlt, W. Comparison of static and dynamic measurements of adsorption isotherms. Sep. Sci. Technol. 2002, 37, 1611–1629. [Google Scholar] [CrossRef]
- Irankunda, R.; Camaño Echavarría, J.A.; Paris, C.; Stefan, L.; Desobry, S.; Selmeczi, K.; Muhr, L.; Canabady-Rochelle, L. Metal-Chelating Peptides Separation Using Immobilized Metal Ion Affinity Chromatography: Experimental Methodology and Simulation. Separations 2022, 9, 370. [Google Scholar] [CrossRef]
- Muhr, L.; Pontvianne, S.; Selmeczi, K.; Paris, C.; Boschi-Muller, S.; Canabady-Rochelle, L. Chromatographic separation simulation of metal-chelating peptides from surface plasmon resonance binding parameters. J. Sep. Sci. 2020, 43, 2031–2041. [Google Scholar] [CrossRef] [PubMed]
- Carta, G.; Jungbauer, A. Protein Chromatography: Process Development and Scale-Up; Wiley-VCH: Weinheim, Germany, 2010; ISBN 978-3-527-31819-3. [Google Scholar]
- Irankunda, R.; Camaño Echavarría, J.A.; Paris, C.; Selmeczi, K.; Stefan, L.; Boschi-Muller, S.; Muhr, L.; Canabady-Rochelle, L. Deciphering Interactions Involved in Immobilized Metal Ion Affinity Chromatography and Surface Plasmon Resonance for Validating the Analogy between Both Technologies. Inorganics 2024, 12, 31. [Google Scholar] [CrossRef]
- Schmidt-Traub, H. (Ed.) Preparative Chromatography of Fine Chemicals and Pharmaceutical Agents; Wiley-VCH: Weinheim, Germany, 2005; ISBN 978-3-527-30643-5. [Google Scholar]
- Sofer, G.K.; Hagel, L. Handbook of Process Chromatography: A Guide to Optimization, Scale Up, and Validation; Academic Press: San Diego, CA, USA, 1997; ISBN 978-0-12-654266-0. [Google Scholar]
- Ren, D.; Penner, N.A.; Slentz, B.E.; Mirzaei, H.; Regnier, F. Evaluating Immobilized Metal Affinity Chromatography for the Selection of Histidine-Containing Peptides in Comparative Proteomics. J. Proteome Res. 2003, 2, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Ren, D.; Penner, N.A.; Slentz, B.E.; Regnier, F.E. Histidine-Rich Peptide Selection and Quantification in Targeted Proteomics. J. Proteome Res. 2004, 3, 37–45. [Google Scholar] [CrossRef]
Parameter (Unit) | Standard Conditions | Variation Range | Justification |
---|---|---|---|
Injected peptide volume (μL) | 50 | 10 to 50 | 1–5% of total column volume |
Peptide concentration (mM) | 2 or 20 | 0.001 to 20 | 2 mM in IMAC experiments |
Peptide molecular weight (g/mol) | Peptide MW | 280 to 1400 | Average MW of a 2 to 10 residues peptide |
Imidazole concentration (mM) | 0 mM isocratic | 0 to 500 mM in isocratic | |
Elution gradient: 0–600 mM in 60 min | - | 0–500 mM in IMAC experiments | |
Flow rate (mL/min) | 1 | 0.5 to 1.5 | 1 mL in IMAC experiments |
Total porosity (no unit) | 0.48 | 0 to 1 | 0.48 in IMAC experiments |
Column volume (mL) | 1 | 1 and 5 | IMAC column dimensions |
Column diameter (cm) | 0.7 | - | - |
Column height (cm) | 2.5 | - | - |
Lumped mass transfer coefficient (Km) (min−1) | 1 × 10−6 | - | - |
Apparent axial dispersion coefficient (DL) (cm2·S−1) | 0.05 | - | - |
Simulation time (min) | 30 | - | - |
Source | No | Peptide | MW (g/mol) | KA,SPR (M−1) | Rmax | qmax,SPR g·L−1 | KA,IMAC L·g−1 | qmax,IMAC g·L−1 | KA∗qmax |
---|---|---|---|---|---|---|---|---|---|
pea proteins | 1 | GRHRQKHS | 1005.12 | 53,590.6 | 28.70 | 0.29 | 53.32 | 0.29 | 15.30 |
2 | KGKSR | 574.67 | 21,929.8 | 24.90 | 0.25 | 38.16 | 0.25 | 9.50 | |
3 | HHHHHH | 840.87 | 1,472,754.1 | 43.80 | 0.44 | 12.81 | 0.44 | 5.61 | |
4 | KRHGEWRPS | 1152.27 | 1355.2 | 366.30 | 3.66 | 1.18 | 3.66 | 4.32 | |
5 | HGSLHKNA | 862.95 | 5115.1 | 72.38 | 0.72 | 5.93 | 0.72 | 4.29 | |
6 | RHGEWRPS | 1024.09 | 3290.6 | 81.30 | 0.81 | 3.21 | 0.81 | 2.61 | |
7 | HGSLH | 549.59 | 2928.3 | 38.40 | 0.38 | 5.33 | 0.38 | 2.05 | |
8 | YPVGR | 590.67 | 6385.7 | 15.00 | 0.15 | 10.81 | 0.15 | 1.62 | |
9 | QRHRK | 723.90 | 1098.9 | 52.85 | 0.53 | 2.73 | 0.53 | 1.44 | |
10 | GLH | 325.36 | 638.2 | 19.30 | 0.19 | 1.96 | 0.19 | 0.38 | |
11 | GLHLPS | 622.71 | 179.0 | 54.50 | 0.55 | 0.29 | 0.55 | 0.16 | |
12 | KERESH | 784.82 | 206.8 | 76.90 | 0.85 | 0.14 | 0.85 | 0.12 | |
potato proteins | 13 | THTAQETAK | 986.04 | 65,574.0 | 13.00 | 0.13 | 66.50 | 0.13 | 8.65 |
14 | ASH | 313.31 | 16,003.0 | 14.60 | 0.15 | 51.08 | 0.15 | 7.46 | |
15 | DHGPKIFEPS | 1126.22 | 12,900.0 | 15.50 | 0.16 | 11.45 | 0.16 | 1.77 | |
16 | DNHETYE | 906.85 | 682.0 | 16.10 | 0.16 | 0.75 | 0.16 | 0.12 | |
unkown | 17 | HHH | 429.43 | 14,400.0 | 99.78 | 1.00 | 33.53 | 1.00 | 33.46 |
18 | HW | 341.36 | 8850.0 | 109.90 | 1.10 | 25.93 | 1.10 | 28.50 | |
19 | HGH | 349.35 | 4310.0 | 93.70 | 0.94 | 12.34 | 0.94 | 11.56 | |
20 | GNH | 326.31 | 175.0 | 127.10 | 1.27 | 0.54 | 1.27 | 0.69 | |
21 | CAH | 329.38 | 370.0 | 51.81 | 0.52 | 1.12 | 0.52 | 0.58 | |
22 | DAH | 341.32 | 286.0 | 58.76 | 0.59 | 0.84 | 0.59 | 0.49 | |
23 | DTH | 371.35 | 370.0 | 41.20 | 0.41 | 1.00 | 0.41 | 0.41 | |
24 | RTH | 412.44 | 161.0 | 95.34 | 0.95 | 0.39 | 0.95 | 0.37 | |
25 | NCS | 322.34 | 483.0 | 23.59 | 0.24 | 1.50 | 0.24 | 0.35 | |
26 | DSH | 357.32 | 179.0 | 39.90 | 0.40 | 0.50 | 0.40 | 0.20 | |
27 | EAH | 355.35 | 169.0 | 28.54 | 0.29 | 0.48 | 0.29 | 0.14 | |
Imidazole | 68.07 | 160.0 | 41.35 | 0.41 | 2.35 | 0.41 | 0.96 |
Approach 1 | Approach 2 | Approach 3 | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Experimental IMAC | Initial Simulation | Correction Factor Fi on qmax of Each Peptide and Imidazole | Mean correction Fmean Factor on qmax of Peptides and Imidazole | Correction Factor on qmax of Each Peptide, qmax Imidazole Detemined by Experimental IMAC | |||||||||||||||||
No. | Peptide | tR.exp (min) | tR.sim (min) | Δ(tR.exp − tR.sim) (min) | Relative Diff. | Correction Factor | qmax Corrected g·L−1 | New tR.sim (min) | Δ(tR exp − tR.sim) (min) | Relative Diff. | Mean Correction Factor | qmax Corrected g·L−1 | New tR.sim (min) | Δ(tR.exp − tR.sim) (min) | Relative Diff. | Correction Factor | qmax Corrected g·L−1 | New tR.sim (min) | Δ(tR.exp − tR.sim) (min) | Relative Diff. | |
HisTrap-X | 1 | GRHRQKHS | 15.28 | 0.480 | 14.800 | 97% | 52.25 | 15.00 | 15.280 | 0.0 × 1000 | 0% | 32.02 | 9.19 | 9.985 | 5.30 | 35% | 53.41 | 15.33 | 15.280 | 0.0 × 1000 | 0% |
2 | KGKSR ** | 4.18 | 0.485 | 3.695 | 88% | 13.93 | 3.47 | 4.180 | 8.9 × 10−16 | 0% | 32.02 | 7.97 | 9.265 | 5.09 | 122% | 13.85 | 3.45 | 4.181 | 1.0 × 10-03 | 0% | |
3 | HHHHHH ** | 19.58 | 0.490 | 19.090 | 97% | 132.85 | 58.19 | 19.580 | 3.6 × 10−15 | 0% | 32.02 | 14.02 | 7.625 | 11.96 | 61% | 138.28 | 60.57 | 19.580 | 3.6 × 10-15 | 0% | |
4 | KRHGEWRPS | 8.38 | 0.675 | 7.705 | 92% | 30.65 | 112.27 | 8.380 | 1.8 × 10−15 | 0% | 32.02 | 117.29 | 8.590 | 0.21 | 3% | 31.74 | 116.26 | 8.380 | 1.8 × 10-15 | 0% | |
5 | HGSLHKNA | 6.88 | 0.500 | 6.380 | 93% | 28.53 | 20.66 | 6.880 | 0.0 × 1000 | 0% | 32.02 | 23.18 | 7.450 | 0.57 | 8% | 29.92 | 21.66 | 6.881 | 1.0 × 10-03 | 0% | |
6 | RHGEWRPS | 4.58 | 0.500 | 4.080 | 89% | 21.97 | 17.86 | 4.580 | 0.0 × 1000 | 0% | 32.02 | 26.03 | 5.930 | 1.35 | 29% | 23.51 | 19.11 | 4.580 | 0.0 × 1000 | 0% | |
7 | HGSLH | 4.68 | 0.495 | 4.185 | 89% | 26.7 | 10.25 | 4.680 | 8.9 × 10−16 | 0% | 32.02 | 12.30 | 5.285 | 0.61 | 13% | 29.87 | 11.47 | 4.680 | 8.9 × 10-16 | 0% | |
8 | YPVGR * | 0.48 | 0.485 | 0.005 | 1% | 1 | 0.15 | 0.485 | 5.0 × 10−3 | 1% | 1.00 | 0.15 | 0.485 | 5.0 × 10−3 | 1% | 1.00 | 0.15 | 0.485 | 5.0 × 10-03 | 1% | |
9 | QRHRK * | 0.48 | 0.500 | 0.020 | 4% | 1 | 0.53 | 0.495 | 1.5 × 10−2 | 3% | 1.00 | 0.53 | 0.495 | 1.5 × 10−2 | 3% | 1.00 | 0.53 | 0.495 | 1.5 × 10-02 | 3% | |
10 | GLH * | 3.28 | 0.495 | 2.785 | 85% | 20.4 | 3.94 | 3.280 | 4.4 × 10−16 | 0% | 20.40 | 3.94 | 3.280 | 4.4 × 10−16 | 0% | 20.40 | 3.94 | 3.280 | 4.4 × 10-16 | 0% | |
11 | GLHLPS * | 3.28 | 0.500 | 2.780 | 85% | 48.6 | 26.49 | 3.280 | 4.4 × 10−16 | 0% | 48.60 | 26.49 | 3.280 | 4.4 × 10−16 | 0% | 48.60 | 26.49 | 3.280 | 4.4 × 10-16 | 0% | |
12 | KERESH * | 0.48 | 0.500 | 0.020 | 4% | 1 | 0.85 | 0.500 | 2.0 × 10−2 | 4% | 1.00 | 0.85 | 0.500 | 2.0 × 10−2 | 4% | 1.00 | 0.85 | 0.500 | 2.0 × 10-02 | 4% | |
mean relative difference | 92% | 0% | 18% | 0% | |||||||||||||||||
HiFliQ-NTA | 1 | GRHRQKHS | 8.38 | 0.480 | 7.900 | 94% | 27 | 7.75 | 8.385 | 5.0 × 10−3 | 0% | 17.54 | 5.04 | 5.085 | 3.30 | 39% | 27.53 | 7.90 | 8.383 | 3.0 × 10-03 | 0% |
2 | KGKSR ** | 0.48 | 0.485 | 0.005 | 1% | 1 | 0.25 | 0.485 | 5.0 × 10−3 | 1% | 1.00 | 0.25 | 0.485 | 0.01 | 1% | 1.00 | 0.25 | 0.485 | 5.0 × 10-03 | 1% | |
3 | HHHHHH ** | 13.48 | 0.490 | 12.990 | 96% | 72.5 | 31.76 | 13.485 | 5.0 × 10−3 | 0% | 17.54 | 7.68 | 4.625 | 8.86 | 66% | 76.20 | 33.38 | 13.481 | 1.0 × 10-03 | 0% | |
4 | KRHGEWRPS | 5.18 | 0.675 | 4.505 | 87% | 13.72 | 50.26 | 5.180 | 8.9 × 10−16 | 0% | 17.54 | 64.26 | 6.035 | 0.86 | 17% | 14.31 | 52.42 | 5.180 | 8.9 × 10-16 | 0% | |
5 | HGSLHKNA | 4.68 | 0.500 | 4.180 | 89% | 16.9 | 12.24 | 4.675 | 5.0 × 10−3 | 0% | 17.54 | 12.70 | 4.815 | 0.14 | 3% | 18.09 | 13.10 | 4.681 | 1.0 × 10-03 | 0% | |
6 | RHGEWRPS | 2.98 | 0.500 | 2.480 | 83% | 12.5 | 10.16 | 2.975 | 5.0 × 10−3 | 0% | 17.54 | 14.26 | 3.885 | 0.90 | 30% | 13.96 | 11.35 | 2.980 | 4.4 × 10-16 | 0% | |
7 | HGSLH | 3.48 | 0.495 | 2.985 | 86% | 17.6 | 6.76 | 3.480 | 4.4 × 10−16 | 0% | 17.54 | 6.74 | 3.470 | 0.01 | 0% | 20.84 | 8.00 | 3.480 | 4.4 × 10-16 | 0% | |
8 | YPVGR * | 0.48 | 0.485 | 0.005 | 1% | 1 | 0.15 | 0.485 | 5.0 × 10−3 | 1% | 1.00 | 0.15 | 0.485 | 5.0 × 10−3 | 1% | 1.00 | 0.15 | 0.485 | 5.0 × 10-03 | 1% | |
9 | QRHRK * | 0.48 | 0.500 | 0.020 | 4% | 1 | 0.53 | 0.500 | 2.0 × 10−2 | 4% | 1.00 | 0.53 | 0.500 | 2.0 × 10−2 | 4% | 1.00 | 0.53 | 0.500 | 2.0 × 10-02 | 4% | |
10 | GLH * | 0.48 | 0.495 | 0.015 | 3% | 1 | 0.19 | 0.495 | 1.5 × 10−2 | 3% | 1.00 | 0.19 | 0.495 | 1.5 × 10−2 | 3% | 1.00 | 0.19 | 0.495 | 1.5 × 10-02 | 3% | |
11 | GLHLPS * | 0.48 | 0.500 | 0.020 | 4% | 1 | 0.55 | 0.500 | 2.0 × 10−2 | 4% | 1.00 | 0.55 | 0.500 | 2.0 × 10−2 | 4% | 1.00 | 0.55 | 0.500 | 2.0 × 10-02 | 4% | |
12 | KERESH * | 0.48 | 0.500 | 0.020 | 4% | 1 | 0.85 | 0.500 | 2.0 × 10−2 | 4% | 1.00 | 0.85 | 0.500 | 2.0 × 10−2 | 4% | 1.00 | 0.85 | 0.500 | 2.0 × 10-02 | 4% | |
mean relative difference | 77% | 0% | 18% | 0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Irankunda, R.; Jambon, P.; Marc, A.; Camaño Echavarría, J.A.; Muhr, L.; Canabady-Rochelle, L. Simulation of Ni2+ Chelating Peptides Separation in IMAC: Prediction of Langmuir Isotherm Parameters from SPR Affinity Data. Processes 2024, 12, 592. https://doi.org/10.3390/pr12030592
Irankunda R, Jambon P, Marc A, Camaño Echavarría JA, Muhr L, Canabady-Rochelle L. Simulation of Ni2+ Chelating Peptides Separation in IMAC: Prediction of Langmuir Isotherm Parameters from SPR Affinity Data. Processes. 2024; 12(3):592. https://doi.org/10.3390/pr12030592
Chicago/Turabian StyleIrankunda, Rachel, Pauline Jambon, Alexandra Marc, Jairo Andrés Camaño Echavarría, Laurence Muhr, and Laetitia Canabady-Rochelle. 2024. "Simulation of Ni2+ Chelating Peptides Separation in IMAC: Prediction of Langmuir Isotherm Parameters from SPR Affinity Data" Processes 12, no. 3: 592. https://doi.org/10.3390/pr12030592