Impact of Watermelon Seed Flour on the Physical, Chemical, and Sensory Properties of Low-Carbohydrate, High-Protein Bread
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Bread Making Procedure
2.3. Analysis of the Basic Properties of Bread
2.4. Color Measurements of Bread
2.5. Texture Properties of Bread Crumb Evaluation
2.6. Sensory Evaluation of Bread
2.7. Amino Acid Profile Analysis
2.8. Calorific Value of Bread Calculation
2.9. Statistical Analyses
3. Results
3.1. Basic Properties of Low-Carbohydrate Bread with Different Amounts of WSF
3.2. Color Parameters of Low-Carbohydrate Bread with Different Amounts of WSF
3.3. Texture Properties of Low-Carbohydrate Bread with Different Amounts of WSF
3.4. Sensory Evaluation of Low-Carbohydrate Bread with Different Amounts of WSF
3.5. Amino-Acid Composition of Low Carbohydrate Bread with Optimal WSF
3.6. Caloric Value of Low-Carbohydrate Bread with Optimal WSF
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Skendi, A.; Papageorgiou, M.; Varzakas, T. High Protein Substitutes for Gluten in Gluten-Free Bread. Foods 2021, 10, 1997. [Google Scholar] [CrossRef] [PubMed]
- Vinod, B.R.; Asrey, R.; Rudra, S.G.; Urhe, S.B.; Mishra, S. Chickpea as a promising ingredient substitute in gluten-free bread making: An overview of technological and nutritional benefits. Food Chem. Adv. 2023, 3, 100473. [Google Scholar] [CrossRef]
- Yano, H.; Fu, W. Effective Use of Plant Proteins for the Development of “New” Foods. Foods 2022, 11, 1185. [Google Scholar] [CrossRef]
- Anang, D.A.; Pobee, R.A.; Antwi, E.; Obeng, E.M.; Atter, A.; Ayittey, F.K.; Boateng, J.T. Nutritional, microbial and sensory attributes of bread fortified with defatted watermelon seed flour. Int. J. Food Sci. Technol. 2018, 53, 1468–1475. [Google Scholar] [CrossRef]
- Wójcik, M.; Różyło, R.; Schönlechner, R.; Berger, M.V. Physico-chemical properties of an innovative gluten-free, low-carbohydrate and high protein-bread enriched with pea protein powder. Sci. Rep. 2021, 11, 14498. [Google Scholar] [CrossRef] [PubMed]
- Ubbor, S.C.; Akobundu, E.N.T. Quality Characteristics of Cookies from Composite Flours of Watermelon Seed, Cassava and Wheat. Pak. J. Nutr. 2009, 8, 1097–1102. [Google Scholar] [CrossRef]
- Ogodo, A.C.; Ugbogu, O.C.; Ugbogu, A.E.; Ezeonu, C.S. Production of mixed fruit (pawpaw, banana and watermelon) wine using Saccharomyces cerevisiae isolated from palm wine. SpringerPlus 2015, 4, 683. [Google Scholar] [CrossRef]
- Gumeniuk, O.; Zamai, Z.; Tsybulia, S.; Khrebtan, O.; Volkova, R. Study of the influence of native and germinated pumpkin and watermelon seeds on the quality of dough and bread. Food Sci. Technol. 2021, 15, 108–119. [Google Scholar] [CrossRef]
- Seidu, K.T.; Otutu, O.L. Phytochemical composition and radical scavenging activities of watermelon (Citrullus lanatus) seed constituents. Croat. J. Food Sci. Technol. 2016, 8, 83–89. [Google Scholar] [CrossRef]
- Tabiri, B.; Agbenorhevi, J.K.; Wireko-Manu, F.D.; Ompouma, E.I. Watermelon Seeds as Food: Nutrient Composition, Phytochemicals and Antioxidant Activity. Int. J. Nutr. Food Sci. 2016, 5, 139–144. [Google Scholar] [CrossRef]
- Addo, P.W.; Agbenorhevi, J.K.; Adu-Poku, D. Antinutrient contents of watermelon seeds. MOJ Food Process. Technol. 2018, 6, 237–239. [Google Scholar] [CrossRef]
- El-Adawy, T.A.; Taha, K.M. Characteristics and Composition of Watermelon, Pumpkin, and Paprika Seed Oils and Flours. J. Agric. Food Chem. 2001, 49, 1253–1259. [Google Scholar] [CrossRef] [PubMed]
- Bolaji, O.T.; Adeyeye, S.A.O.; Ogunmuyiwa, D. Quality Evalution of Bread Produced from Whole Wheat Flour Blended with Watermelon Seed Flour. J. Culin. Sci. Technol. 2022, 2068466. [Google Scholar] [CrossRef]
- Sadji, M.; Ndiaye, N.F.; Lopy, M.S.; Zongo, C.; Traore, Y.; Diop Sall, M.; Traore, A. Production of Puree and Watermelon (Citrullus lanatus) Juice Usable in Bread Making. J. Food. Nutr. Popul. Health 2018, 2, 100031. [Google Scholar] [CrossRef]
- Shivapour, M.; Yousefi, S.; Seyedain Ardabili, S.M.; Weisany, W. Optimization and quality attributes of novel toast breads developed based on the antistaling watermelon rind powder. J. Agric. Food Res. 2020, 2, 100073. [Google Scholar] [CrossRef]
- Fahmy, H.M.; El-Waseif, M.A.; Badr, S.A.; Abd-Elazim, E.I.; Sabry, A.M.; Shaaban, H.A. Chemical and Sensory Evaluation of Balady Bread Supplemented with Watermelon Rinds Flour and its Anti-Hyperlipidemic Effect in Male Albina Rats. Pak. J. Biol. Sci. 2022, 25, 993–1000. [Google Scholar] [CrossRef]
- Peter-Ikechukwu, A.I.; Kabuo, N.O.; Uzoukwu, A.E.; Chukwu, M.N.; Ogazi, C. Physical and Organoleptic Properties of Cookies Produced with Date Fruit Pulp, Toasted Watermelon Seed and Wheat Flour Composite. Eur. J. Agric. Food Sci. 2020, 2, 1–5. [Google Scholar] [CrossRef]
- Olawumi, T.I.B.; Franca, E. Chemical properties of watermelon seed and the utilization of dehulled seed in cookies production. Carpathian J. Food Sci. Technol. 2017, 9, 126–135. [Google Scholar]
- Peter-Ikechukwu, A.I.; Omeire1, G.C.; Kabuo, N.O.; Eluchie, C.N.; Amandikwa, C.; Odoemenam, G.I. Production and Evaluation of Biscuits Made From Wheat Flour and Toasted Watermelon Seed Meal as Fat Substitute. J. Food Res. 2018, 7, 112–123. [Google Scholar] [CrossRef]
- Ruchi, P.V.; Ajit, P. Development of nutritious snacks by incorporation of amaranth seeds, watermelon seeds and their flour. Indian J. Community Health 2014, 26, 86–94. [Google Scholar]
- Schoenfeld, B.J.; Aragon, A.A. How much protein can the body use in a single meal for muscle-building? Implications for daily protein distribution. J. Int. Soc. Sports Nutr. 2018, 15, 10. [Google Scholar] [CrossRef]
- Phillips, S.M.; Chevalier, S.; Leidy, H.J. Protein “requirements” beyond the RDA: Implications for optimizing health. Appl. Physiol. Nutr. Metab. 2016, 41, 565–572. [Google Scholar] [CrossRef] [PubMed]
- AACC Approved Methods of Analysis, 11th Edition. Available online: http://methods.aaccnet.org/toc.aspx (accessed on 1 January 2023).
- Gámbaro, A.; Giménez, A.; Ares, G.; Gilardi, V. Influence of enzymes on the texture of brown pan bread. J. Texture Stud. 2006, 37, 300–314. [Google Scholar] [CrossRef]
- Wichchukit, S.; O’Mahony, M. The 9-point hedonic scale and hedonic ranking in food science: Some reappraisals and alternatives. J. Sci. Food Agric. 2015, 95, 2167–2178. [Google Scholar] [CrossRef] [PubMed]
- Davis, M.G.; Thomas, A.J. An investigation of hydrolytic techniques for the amino acid analysis of food stuffs. J. Sci. Food Agric. 1973, 24, 1525–1540. [Google Scholar] [CrossRef] [PubMed]
- Schramm, F.; Moor, S.J.; Bigwood, E.J. Chromatographic determination of cystine as cysteic acid. Biochem. J. 1954, 59, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Ziemichód, A.; Wójcik, M.; Różyło, R. Ocimum tenuiflorum seeds and Salvia hispanica seeds: Mineral and amino acid composition, physical properties, and use in gluten-free bread. CYTA-J. Food 2019, 17, 804–813. [Google Scholar] [CrossRef]
- Costantini, L.; Lukšič, L.; Molinari, R.; Kreft, I.; Bonafaccia, G.; Manzi, L.; Merendino, N. Development of gluten-free bread using tartary buckwheat and chia flour rich in flavonoids and omega-3 fatty acids as ingredients. Food Chem. 2014, 165, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Jaroszewska, A.; Jedrejek, D.; Sobolewska, M.; Kowalska, I.; Dzięcioł, M. Mineral, Nutritional, and Phytochemical Composition and Baking Properties of Teff and Watermelon Seed Flours. Molecules 2023, 28, 3255. [Google Scholar] [CrossRef]
- Wójcik, M.; Różyło, R.; Schönlechner, R.; Matwijczuk, A.; Dziki, D. Low-Carbohydrate, High-Protein, and Gluten-Free Bread Supplemented with Poppy Seed Flour: Physicochemical, Sensory, and Spectroscopic Properties. Molecules 2022, 27, 1574. [Google Scholar] [CrossRef]
- Wójcik, M.; Dziki, D.; Matwijczuk, A.; Gawlik-Dziki, U. Walnut Flour as an Ingredient for Producing Low-Carbohydrate Bread: Physicochemical, Sensory, and Spectroscopic Characteristics. Foods 2023, 12, 3320. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.K.; Bejkar, M.; Du, S.; Serventi, L. ArticleFlax and wattle seed powders enhance volume and softness of gluten-free bread. Food Sci. Technol. Int. 2018, 25, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Korus, J.; Chmielewska, A.; Witczak, M.; Ziobro, R.; Juszczak, L. Rapeseed protein as a novel ingredient of gluten-free bread. Eur. Food Res. Technol. 2021, 247, 2015–2025. [Google Scholar] [CrossRef]
- Taylor, J.R.N.; Taylor, J.; Campanella, O.H.; Hamaker, B.R. Functionality of the storage proteins in gluten-free cereals and pseudocereals in dough systems. J. Cereal Sci. 2016, 67, 22–34. [Google Scholar] [CrossRef]
- Saranraj, P.; Geetha, M. Microbial spoilage of bakery products and its control by preservatives. Int. J. Pharm. Biol. Arch. 2012, 3, 38–48. [Google Scholar]
- Iglesias-Puig, E.; Monedero, V.; Haros, M. Bread with whole quinoa flour and bifidobacterial phytases increases dietary mineral intake and bioavailability. LWT—Food Sci. Technol. 2015, 60, 71–77. [Google Scholar] [CrossRef]
- Korus, J.; Juszczak, L.; Ziobro, R.; Witczak, M.; Grzelak, K.; Sójka, M. Defatted strawberry and blackcurrant seeds as functional ingredients of gluten-free bread. J. Texture Stud. 2012, 43, 29–39. [Google Scholar] [CrossRef]
- Atzler, J.J.; Sahin, A.W.; Gallagher, E.; Zannini, E.; Arendt, E.K. Investigation of different dietary-fibre-ingredients for the design of a fibre enriched bread formulation low in FODMAPs based on wheat starch and vital gluten. Eur. Food Res. Technol. 2021, 247, 1939–1957. [Google Scholar] [CrossRef]
- Wani, A.A.; Singh Sogi, D.; Singh, P.; Wania, I.A.; Shivhared, U.S. Characterisation and functional properties of watermelon (Citrullus lanatus) seed proteins. J. Sci. Food Agric. 2011, 91, 113–121. [Google Scholar] [CrossRef]
- Egbuonu, A.C.C. Comparative Assessment of some Mineral, Amino Acid and Vitamin Compositions of Watermelon (Citrullus lanatus) Rind and Seed. Asian J. Biochem. 2015, 10, 230–236. [Google Scholar] [CrossRef]
- Mariscal-Moreno, R.M.; Chuck-Hernández, C.; Figueroa-Cárdenas, J.d.D.; Serna-Saldivar, S.O. Physicochemical and Nutritional Evaluation of Bread Incorporated with Ayocote Bean (Phaseolus coccineus) and Black Bean (Phaseolus vulgaris). Processes 2021, 9, 1782. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, R.; Tilley, M.; Siliveru, K.; Li, Y. Effect of Pulse Type and Substitution Level on Dough Rheology and Bread Quality of Whole Wheat-Based Composite Flours. Processes 2021, 9, 1687. [Google Scholar] [CrossRef]
Amount of WSF (%) | Moisture of Bread (%) | Baking Loss (%) | Specific Volume of Bread (cm3·g−1) | pH− |
---|---|---|---|---|
0 | 55.4 ± 0.52 a* | 24.7 ± 0.45 b | 1.45 ± 0.02 a | 5.4 ± 0.03 a |
5 | 57.6 ± 0.34 b | 23.1 ± 0.48 a | 1.54 ± 0.01 b | 5.5 ± 0.03 b |
10 | 57.9 ± 0.23 b | 23.6 ± 0.33 a | 1.46 ± 0.03 a | 5.5 ± 0.02 b |
15 | 58.5 ± 0.33 b | 28.1 ± 0.49 c | 1.46 ± 0.01 a | 5.5 ± 0.06 b |
Sample | L* | a* | b* | ∆E |
---|---|---|---|---|
0 | 36.8 ± 0.08 a* | 6.1 ± 0.02 a | 18.9 ± 0.03 a | - |
5 | 37.0 ± 0.39 a | 6.1 ± 0.06 a | 19.5 ± 0.15 a | 1.31 ± 0.14 |
10 | 38.3 ± 0.35 b | 6.4 ± 0.09 a | 19.7 ± 0.22 a | 2.21 ± 0.10 |
15 | 39.0 ± 0.20 b | 6.4 ± 0.01 a | 19.9 ± 0.16 a | 3.28 ± 0.13 |
Amino Acids | Amount of Amino Acid (mg∙g−1) | |
---|---|---|
Control | 5% WSF | |
Asparagine | 36.6 ± 0.22 * | 37.3 ± 0.18 ** |
Threonine | 12.8 ± 0.46 * | 13.1 ± 0.22 * |
Serine | 17.2 ± 0.23 * | 18.0 ± 0.23 ** |
Glutamic acid | 62.8 ± 0.85 * | 64.9 ± 0.20 ** |
Proline | 18.4 ± 0.38 * | 19.2 ± 0.17 * |
Glycine | 16.0 ± 0.12 * | 16.5 ± 0.20 * |
Alanine | 15.5 ± 0.46 * | 17.0 ± 0.32 ** |
Cysteic acid | 6.1 ± 0.24 * | 5.16 ± 0.12 ** |
Valine | 17.4 ± 0.36 * | 18.0 ± 0.24 * |
Methionine sulfone | 5.5 ± 0.21 * | 5.6 ± 0.16 * |
Isoleucine | 14.1 ± 0.16 * | 14.3 ± 0.13 * |
Leucine | 23.3 ± 0.32 * | 23.9 ± 0.18 * |
Tyrosine | 9.0 ± 0.17 * | 9.2 ± 0.25 * |
Phenylalanine | 16.9 ± 0.33 * | 17.2 ± 0.19 * |
Histidine | 8.2 ± 0.25 * | 8.5 ± 0.21 * |
Lysine | 19.8 ± 0.19 * | 20.4 ± 0.18 ** |
Arginine | 30.1 ± 0.7 * | 32.6 ± 0.20 ** |
Tryptophan | 8.6 ± 0.18 * | 6.8 ± 0.15 ** |
Chemical Components (g/100 g d.m.) | Addition of WSF (%) | |
---|---|---|
0 | 5 | |
Protein | 33.49 ± 0.19 a* | 34.23 ± 0.24 b |
Fat | 4.29 ± 0.03 b | 2.86 ± 0.07 a |
Ash | 5.09 ± 0.02 a | 5.22 ± 0.04 a |
Total fibre | 37.12 ± 0.06 a | 40.18 ± 0.10 b |
Available carbohydrate | 12.4 ±0.38 a | 8.7 ± 0.28 b |
Caloric value (kcal/100 g) | 297.21 b | 277.62 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wójcik, M.; Bieńczak, A.; Woźniak, P.; Różyło, R. Impact of Watermelon Seed Flour on the Physical, Chemical, and Sensory Properties of Low-Carbohydrate, High-Protein Bread. Processes 2023, 11, 3282. https://doi.org/10.3390/pr11123282
Wójcik M, Bieńczak A, Woźniak P, Różyło R. Impact of Watermelon Seed Flour on the Physical, Chemical, and Sensory Properties of Low-Carbohydrate, High-Protein Bread. Processes. 2023; 11(12):3282. https://doi.org/10.3390/pr11123282
Chicago/Turabian StyleWójcik, Monika, Agata Bieńczak, Paweł Woźniak, and Renata Różyło. 2023. "Impact of Watermelon Seed Flour on the Physical, Chemical, and Sensory Properties of Low-Carbohydrate, High-Protein Bread" Processes 11, no. 12: 3282. https://doi.org/10.3390/pr11123282