Laboratory Research on Design of Three-Phase AC Arc Plasma Pyrolysis Device for Recycling of Waste Printed Circuit Boards
Abstract
:1. Introduction
2. Plasma Device Design
3. Experimental and Results
4. Conclusions
- (1)
- The three-phase AC arc plasma can operate stably, which overcomes the problems of poor continuity and low energy of single-arc discharge.
- (2)
- Air-plasma would generate NOx contaminants, burn the organics, and oxidize the metals, and thus, one would have had to resort to other gases.
- (3)
- Ar-plasma can break the long chains of organic macromolecules to make combustible gas.
- (4)
- Ar/H2-plasma promoted the decrease of carbon dioxide and increase of combustible small molecular hydrocarbons in the pyrolysis product.
- (5)
- The strong adhesion between the metals and fiberglass boards would be destroyed by plasma pyrolysis and facilitate subsequent separation.
- (6)
- This laboratory work provides a novel three-phase AC arc plasma device and a new way of recycling WPCBs with high value.
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Li, J.; Wen, J.; Guo, Y.; An, N.; Liang, C.; Ge, Z. Bioleaching of gold from waste printed circuit boards by alkali-tolerant Pseudomonas fluorescens. Hydrometallurgy 2020, 194, 105260. [Google Scholar] [CrossRef]
- Das, S.; Ting, Y.-P. Evaluation of Wet Digestion Methods for Quantification of Metal Content in Electronic Scrap Material. Resources 2017, 6, 64. [Google Scholar] [CrossRef] [Green Version]
- Baldé, C.P.; Forti, V.; Gray, V.; Kuehr, R.; Stegmann, P. The Global E-Waste Monitor 2017: Quantities, Flows and Resources; United Nations University (UNU): Bonn, Germany; International Telecommunication Union (ITU): Geneva, Switzerland; International Solid Waste Association (ISWA): Vienna, Austria, 2017. [Google Scholar]
- Johnson, M.; Fitzpatrick, C.; Wagner, M.; Huisman, J. Modelling the levels of historic waste electrical and electronic equipment in Ireland. Resour. Conserv. Recycl. 2018, 131, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Bai, J.-F.; Gu, W.-H.; Peng, S.-J.; Wang, L.-C.; Wang, J.-W.; Li, H.-X. Leaching of copper from waste printed circuit boards using Phanerochaete chrysosporium fungi. Hydrometallurgy 2020, 196, 105427. [Google Scholar] [CrossRef]
- Pinho, S.; Ferreira, M.; Almeida, M.F. A wet dismantling process for the recycling of computer printed circuit boards. Resour. Conserv. Recycl. 2018, 132, 71–76. [Google Scholar] [CrossRef]
- Gu, W.; Bai, J.; Dong, B.; Zhuang, X.; Zhao, J.; Zhang, C.; Wang, J.; Shih, K. Catalytic effect of graphene in bioleaching copper from waste printed circuit boards by Acidithiobacillus ferrooxidans. Hydrometallurgy 2017, 171, 172–178. [Google Scholar] [CrossRef]
- Dai, G.; Han, J.; Duan, C.; Tang, L.; Peng, Y.; Chen, Y.; Jiang, H.; Zhu, Z. Enhanced flotation efficiency of metal from waste printed circuit boards modified by alkaline immersion. Waste Manag. 2020, 120, 795–804. [Google Scholar] [CrossRef]
- Cao, J.; Chen, Y.; Shi, B.; Lu, B.; Zhang, X.; Ye, X.; Zhai, G.; Zhu, C.; Zhou, G. WEEE recycling in Zhejiang Province, China: Generation, treatment, and public awareness. J. Clean. Prod. 2016, 127, 311–324. [Google Scholar] [CrossRef]
- Yamane, L.H.; de Moraes, V.T.; Espinosa, D.C.R.; Ten´orio, J. Recycling of WEEE: Characterization of spent printed circuit boards from mobile phones and computers. Waste Manag. 2011, 31, 2553–2558. [Google Scholar] [CrossRef]
- Grigorescu, R.M.; Ghioca, P.; Iancu, L.; David, M.E.; Andrei, E.R.; Filipescu, M.I.; Ion, R.-M.; Vuluga, Z.; Anghel, I.; Sofran, I.-E.; et al. Development of thermoplastic composites based on recycled polypropylene and waste printed circuit boards. Waste Manag. 2020, 118, 391–401. [Google Scholar] [CrossRef]
- Huang, K.; Zheng, J.; Yuan, W.; Wang, X.; Song, Q.; Li, Y.; Crittenden, J.C.; Wang, L.; Wang, J. Microwave-assisted chemical recovery of glass fiber and epoxy resin from non-metallic components in waste printed circuit boards. Waste Manag. 2021, 124, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Abdelbasir, S.M.; Hassan, S.S.M.; Kamel, A.H.; El-Nasr, R.S. Status of electronic waste recycling techniques: A review. Environ. Sci. Pollut. Res. 2018, 25, 16533–16547. [Google Scholar] [CrossRef] [PubMed]
- Xiu, F.-R.; Li, Y.; Qi, Y. Efficient low-temperature debromination and high selectivity products recovery from brominated epoxy resin waste by subcritical water-urea treatment. Waste Manag. 2020, 109, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Song, Q.; Xu, X.; Xu, Z. Process simulation of Ohno continuous casting for single crystal copper prepared from scrap copper in waste printed circuit boards. Waste Manag. 2021, 124, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Nekouei, R.K.; Pahlevani, F.; Rajarao, R.; Golmohammadzadeh, R.; Sahajwalla, V. Two-step pre-processing enrichment of waste printed circuit boards: Mechanical milling and physical separation. J. Clean. Prod. 2018, 184, 1113–1124. [Google Scholar] [CrossRef]
- Ruan, J.; Xu, Z. Constructing environment-friendly return road of metals from e-waste: Combination of physical separation technologies. Renew. Sustain. Energy Rev. 2016, 54, 745–760. [Google Scholar] [CrossRef]
- Otsuki, A.; Gonçalves, P.P.; Leroy, E. Selective Milling and Elemental Assay of Printed Circuit Board Particles for Their Recycling Purpose. Metals 2019, 9, 899. [Google Scholar] [CrossRef] [Green Version]
- Otsuki, A.; De La Mensbruge, L.; King, A.; Serranti, S.; Fiore, L.; Bonifazi, G. Non-destructive characterization of mechanically processed waste printed circuit boards—Particle liberation analysis. Waste Manag. 2020, 102, 510–519. [Google Scholar] [CrossRef]
- Xue, M.; Xu, Z. Computer Simulation of the Pneumatic Separator in the Pneumatic–Electrostatic Separation System for Recycling Waste Printed Circuit Boards with Electronic Components. Environ. Sci. Technol. 2013, 47, 4598–4604. [Google Scholar] [CrossRef]
- Xue, M.; Yan, G.; Li, J.; Xu, Z. Electrostatic Separation for Recycling Conductors, Semiconductors, and Nonconductors from Electronic Waste. Environ. Sci. Technol. 2012, 46, 10556–10563. [Google Scholar] [CrossRef]
- Choi, J.-W.; Bediako, J.K.; Kang, J.-H.; Lim, C.-R.; Dangi, Y.R.; Kim, H.-J.; Cho, C.-W.; Yun, Y.-S. In-situ microwave-assisted leaching and selective separation of Au(III) from waste printed circuit boards in biphasic aqua regia-ionic liquid systems. Sep. Purif. Technol. 2020, 255, 117649. [Google Scholar] [CrossRef]
- Li, H.; Eksteen, J.; Oraby, E. Hydrometallurgical recovery of metals from waste printed circuit boards (WPCBs): Current status and perspectives—A review. Resour. Conserv. Recycl. 2018, 139, 122–139. [Google Scholar] [CrossRef]
- Mishra, G.; Jha, R.; Rao, M.D.; Meshram, A.; Singh, K.K. Recovery of silver from waste printed circuit boards (WPCBs) through hydrometallurgical route: A review. Environ. Chall. 2021, 4, 100073. [Google Scholar] [CrossRef]
- Ilyas, S.; Srivastava, R.R.; Kim, H. Gold recovery from secondary waste of PCBs by electro-Cl2 leaching in brine solution and solvo-chemical separation with tri-butyl phosphate. J. Clean. Prod. 2021, 295, 126389. [Google Scholar] [CrossRef]
- An, J. Characteristics of Metals Leached from Waste Printed Circuit Boards Using Acidithiobacillus ferrooxidans. Minerals 2021, 11, 224. [Google Scholar] [CrossRef]
- Srivastava, R.R.; Ilyas, S.; Kim, H.; Choi, S.; Trinh, H.B.; Ghauri, M.A.; Ilyas, N. Biotechnological recycling of critical metals from waste printed circuit boards. J. Chem. Technol. Biotechnol. 2020, 95, 2796–2810. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, T.; Xiao, Q.; Wang, P.; Tian, H. Effect of 4-chloro-2-methylphenoxy acetic acid on tomato gene expression and rhizosphere bacterial communities under inoculation with phosphate-solubilizing bacteria. J. Hazard. Mater. 2021, 416, 125767. [Google Scholar] [CrossRef] [PubMed]
- Bilesan, M.R.; Makarova, I.; Wickman, B.; Repo, E. Efficient separation of precious metals from computer waste printed circuit boards by hydrocyclone and dilution-gravity methods. J. Clean. Prod. 2020, 286, 125505. [Google Scholar] [CrossRef]
- Gao, R.; Zhan, L.; Guo, J.; Xu, Z. Research of the thermal decomposition mechanism and pyrolysis pathways from macromonomer to small molecule of waste printed circuit board. J. Hazard. Mater. 2019, 383, 121234. [Google Scholar] [CrossRef]
- Kim, S.; Lee, Y.; Lin, K.-Y.A.; Hong, E.; Kwon, E.E.; Lee, J. The valorization of food waste via pyrolysis. J. Clean. Prod. 2020, 259, 120816. [Google Scholar] [CrossRef]
- Qiu, R.; Lin, M.; Qin, B.; Xu, Z.; Ruan, J. Environmental-friendly recovery of non-metallic resources from waste printed circuit boards: A review. J. Clean. Prod. 2020, 279, 123738. [Google Scholar] [CrossRef]
- Iji, M.; Ikuta, Y. Pyrolysis-based material recovery from molding resin for electronic arts. J. Environ. Eng. 1998, 124, 821–828. [Google Scholar] [CrossRef]
- Ma, H.; Du, N.; Lin, X.; Li, C.; Lai, J.; Li, Z. Experimental study on the heat transfer characteristics of waste printed circuit boards pyrolysis. Sci. Total Environ. 2018, 633, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liang, S.; Xiao, K.; Hu, J.; Hou, H.; Liu, B.; Deng, H.; Yang, J. A cost-effective strategy for metal recovery from waste printed circuit boards via crushing pretreatment combined with pyrolysis: Effects of particle size and pyrolysis temperature. J. Clean. Prod. 2020, 280, 124505. [Google Scholar] [CrossRef]
- Liu, Y. Study on Solid Waste Pyrolysis and Liquid-Solid Products in Fluidized Bed. Master’s Thesis, Beijing University of Chemical Technology, Beijing, China, 2019. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, X.; Zhao, N.; Wang, W.; Du, J.; Ruan, J.; Xu, Z. Bromine removal from resin particles of crushed waste printed circuit boards by vacuum low-temperature heating. J. Clean. Prod. 2020, 262, 121390. [Google Scholar] [CrossRef]
- Guanghan, S.; Zhu, X.; Wenyi, Y.; Chenglong, Z.; Wen, M. Recycling and Disposal Technology for Non-mentallic Materials from Waste Printed Circuit Boards(WPCBs) in China. Procedia Environ. Sci. 2016, 31, 935–940. [Google Scholar] [CrossRef] [Green Version]
- Prado, E.; Miranda, F.; Araujo, L.; Petraconi, G.; Baldan, M.; Essiptchouk, A.; Potiens, A. Experimental study on treatment of simulated radioactive waste by thermal plasma: Temporal evaluation of stable Co and Cs. Ann. Nucl. Energy 2021, 160, 108433. [Google Scholar] [CrossRef]
- Man, W.; Wu, Y.; Xie, P. Plasma technology-an ideal method for waste treatment. Chin. Chem. Biol. Eng. 2009, 26, 1–5. [Google Scholar]
- Cheng, Y.; Li, T.Y.; Jin, Y.; Cheng, Y. State-of-the-art development of research and applications of chemical conversion processes at ultra-high temperature in thermal plasma reactors. Chem. Ind. Eng. Prog. 2016, 35, 1676–1686. [Google Scholar]
- Sharma, D.; Mistry, A.; Mistry, H.; Chaudhuri, P.; Murugan, P.; Patnaik, S.; Sanghariyat, A.; Jain, V.; Chaturvedi, S.; Nema, S. Thermal performance analysis and experimental validation of primary chamber of plasma pyrolysis system during preheating stage using CFD analysis in ANSYS CFX. Therm. Sci. Eng. Prog. 2020, 18, 100525. [Google Scholar] [CrossRef]
- Taheraslani, M.; Gardeniers, H. Plasma Catalytic Conversion of CH4 to Alkanes, Olefins and H2 in a Packed Bed DBD Reactor. Processes 2020, 8, 774. [Google Scholar] [CrossRef]
- Li, S.; Medrano, J.A.; Hessel, V.; Gallucci, F. Recent Progress of Plasma-Assisted Nitrogen Fixation Research: A Review. Processes 2018, 6, 248. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Yuan, H.; Zhou, X.; Liang, J.; Liu, Y.; Chang, D.; Yang, D. Degradation of Benzene Using Dielectric Barrier Discharge Plasma Combined with Transition Metal Oxide Catalyst in Air. Catalysts 2022, 12, 203. [Google Scholar] [CrossRef]
- Lin, L.; Sheng, Z.; Yang, C.; Wu, B.; Wu, C.; Wei, X. Device for Generating Non-Equilibrium Plasma. Chinese Patent CN200520022934.1, 25 April 2005. [Google Scholar]
- Zhang, H.; Yao, M.; Bai, L.; Xiang, W.; Jin, H.; Li, J.; Yuan, F. Synthesis of uniform octahedral tungsten trioxide by RF induction thermal plasma and its application in gas sensing. CrystEngComm 2012, 15, 1432–1438. [Google Scholar] [CrossRef]
- Zhang, H.; Yuan, F.; Chen, Q. Optical Emission Spectroscopy Diagnostics of Atmospheric Pressure Radio Frequency Ar-H2 Inductively Coupled Thermal Plasma. IEEE Trans Plasma Sci. 2020, 48, 3621–3628. [Google Scholar] [CrossRef]
- Quan, C.; Li, A.-M.; Luan, J.-D.; Gao, N.-B. Study on the pyrolysis features and the kinetic analysis of the printed circuit board wastes, Journal of safety and environment. Chin. J. Saf. Environ. 2008, 8, 55–58. [Google Scholar]
Technique | Salient Features | Ref. |
---|---|---|
Rotary kiln | Large processing capacity | [33] |
Fixed bed | Simple process equipment | [34,35] |
Fluidized bed | Shorten pyrolysis time | [36] |
Vacuum pyrolysis | Avoid secondary pyrolysis | [37] |
Air Flow (L/min) | NO (ppm) | NO2 (ppm) | NOx (ppm) |
---|---|---|---|
1.0 | 1304 | 209 | 1513 |
1.5 | 1215 | 133 | 1348 |
2.0 | 1120 | 133 | 1253 |
No. | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Composition | H2 | CO2 | CO | CH4 | C2H4 |
Content | 36.18% | 35.55% | 21.84% | 3.56% | 2.87% |
Standard deviation | 0.17% | 0.14% | 0.23% | 0.12% | 0.11% |
No. | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Composition | H2 | CO2 | CO | CH4 | C2H4 | C3H6 |
Content | 93.53% | 2.26% | 1.87% | 0.72% | 1.57% | 0.04% |
Standard deviation | 0.09% | 0.11% | 0.07% | 0.05% | 0.04% | 0.005% |
No. | Parameters | Value | ||
---|---|---|---|---|
1 | Welding current range | 50 A/22 V~250 A/30 V | ||
2 | Rated welding current | 250 A | 194 A | 148 A |
3 | C onventional load voltage | 30 V | 27.8 V | 25.9 V |
4 | Rated maximum input current | 41 A | ||
5 | Rated input voltage | 380 V |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, L.; Sun, W.; Yang, Z.; Ouyang, Y.; Wang, M.; Yuan, F. Laboratory Research on Design of Three-Phase AC Arc Plasma Pyrolysis Device for Recycling of Waste Printed Circuit Boards. Processes 2022, 10, 1031. https://doi.org/10.3390/pr10051031
Bai L, Sun W, Yang Z, Ouyang Y, Wang M, Yuan F. Laboratory Research on Design of Three-Phase AC Arc Plasma Pyrolysis Device for Recycling of Waste Printed Circuit Boards. Processes. 2022; 10(5):1031. https://doi.org/10.3390/pr10051031
Chicago/Turabian StyleBai, Liuyang, Wenbin Sun, Zhao Yang, Yuge Ouyang, Min Wang, and Fangli Yuan. 2022. "Laboratory Research on Design of Three-Phase AC Arc Plasma Pyrolysis Device for Recycling of Waste Printed Circuit Boards" Processes 10, no. 5: 1031. https://doi.org/10.3390/pr10051031