Logistics Service Provider Evaluation and Selection: Hybrid SERVQUAL–FAHP–TOPSIS Model
Abstract
:1. Introduction
2. Literature Review
3. Methodology
- Step 1:
- Examine and assess the current procedures (logistics service provider evaluation and selection) using the SERVQUAL Model and industry expertise to gather more criteria for each challenge.
- Step 2:
- For each challenge, create MCDM models.
- Step 3:
- Discussion of real-world case studies.
3.1. SERVQUAL Model
- Tangibles: physical facilities, equipment, human resources, overall appearance to the customers
- Reliability: ability to perform the required service accordingly and dependably
- Responsiveness: ability to respond and willingness to assist customers in need of assistance
- Empathy: showing care and understanding customers’ feelings accordingly
- Assurance: employees’ knowledge, courtesy and ability to show confidence to the customers.
3.2. Process of Fuzzy Analytic Hierarchy
3.3. The Order of Preference by Similarity to the Ideal Solution Model Technique (TOPSIS)
4. Case Study
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FedEx Express: Total Average Daily Packages 2021|Statista, Statista. 2021. Available online: https://www.statista.com/statistics/878354/fedex-express-total-average-daily-packages/ (accessed on 5 January 2022).
- James, J.; Felix, R. DHL vs. FedEx vs. UPS: Comparing the Three Behemoths. Available online: https://www.lateshipment.com/blog/overview-of-fedex-ups-and-dhl/ (accessed on 5 January 2022).
- Parmata, U.M.D.; Rajashekhar, B. Measuring service quality in pharmaceutical supply chain—Distributor’s perspective. Int. J. Pharm. Healthc. Mark. 2016, 10, 258–284. [Google Scholar] [CrossRef]
- Rezaeisaray, M.; Ebrahimnejad, S.; Khalili-Damghani, K. A novel hybrid MCDM approach for outsourcing supplier selection. J. Model. Manag. 2016, 11, 536–559. [Google Scholar] [CrossRef]
- Fung, R.; Wong, C. Supplier Environmental Performance Evaluation Using AHP. In Proceedings of the 6th ISAHP 2001, Berne, Switzerland, 2–4 August 2021; pp. 111–118. [Google Scholar]
- Dweiri, F.; Kumar, S.; Khan, S.; Jain, V. Designing an integrated AHP based decision support system for supplier selection in automotive industry. Expert Syst. Appl. 2016, 62, 273–283. [Google Scholar] [CrossRef]
- Wang, C.; Nguyen, V.; Kao, J.; Chen, C.; Nguyen, V. Multi-criteria decision-making methods in fuzzy decision problems: A case study in the frozen shrimp industry. Symmetry 2021, 13, 370. [Google Scholar] [CrossRef]
- Kieu, P.; Nguyen, V.; Nguyen, V.; Ho, T. A spherical fuzzy analytic hierarchy process (SF-AHP) and combined compromise solution (CoCoSo) algorithm in distribution center location selection: A case study in agricultural supply chain. Axioms 2021, 10, 53. [Google Scholar] [CrossRef]
- Tadić, S.; Krstić, M.; Roso, V.; Brnjac, N. Dry port terminal location selection by applying the hybrid grey MCDM model. Sustainability 2020, 12, 6983. [Google Scholar] [CrossRef]
- Budak, A.; Kaya, İ.; Karaşan, A.; Erdoğan, M. Real-time location systems selection by using a fuzzy MCDM approach: An application in humanitarian relief logistics. Appl. Soft Comput. 2020, 92, 106322. [Google Scholar] [CrossRef]
- Vukasović, D.; Gligović, D.; Terzić, S.; Stević, Ž.; Macura, P. A novel fuzzy MCDM model for inventory management in order to increase business efficiency. Technol. Econ. Dev. Econ. 2021, 27, 386–401. [Google Scholar] [CrossRef]
- Negi, L.; Kharde, Y. Identifying the root causes for inventory accumulation and prioritizing them using an MCDM-based TOPSIS approach. Mod. Supply Chain Res. Appl. 2021, 3, 145–154. [Google Scholar] [CrossRef]
- Kartal, H.; Oztekin, A.; Gunasekaran, A.; Cebi, F. An integrated decision analytic framework of machine learning with multi-criteria decision making for multi-attribute inventory classification. Comput. Ind. Eng. 2016, 101, 599–613. [Google Scholar] [CrossRef]
- Aydin, N.; Seker, S. Determining the location of isolation hospitals for COVID-19 via Delphi-based MCDM method. Int. J. Intell. Syst. 2021, 36, 3011–3034. [Google Scholar] [CrossRef]
- Liou, J.; Lu, M.; Hu, S.; Cheng, C.; Chuang, Y. A hybrid MCDM model for improving the electronic health record to better serve client needs. Sustainability 2017, 9, 1819. [Google Scholar] [CrossRef] [Green Version]
- Wanke, P.; Azad, M.K.; Barros, C.; Hadi-Vencheh, A. Predicting performance in ASEAN banks: An integrated fuzzy MCDM-neural network approach. Expert Syst. 2015, 33, 213–229. [Google Scholar] [CrossRef]
- Daiy, A.; Shen, K.; Huang, J.; Lin, T. A hybrid MCDM model for evaluating open banking business partners. Mathematics 2021, 9, 587. [Google Scholar] [CrossRef]
- Fraihi, K.; Famco, D.; Famco, F.; Latif, S. Evaluation of outpatient service quality in Eastern Saudi Arabia. Saudi Med. J. 2016, 37, 420–428. [Google Scholar] [CrossRef]
- Najafi, S.; Saati, S.; Tavana, M. Data envelopment analysis in service quality evaluation: An empirical study. J. Ind. Eng. Int. 2014, 11, 319–330. [Google Scholar] [CrossRef] [Green Version]
- Jayawardhena, C. The impact of service encounter quality in service evaluation: Evidence from a business-to-business context. J. Bus. Ind. Mark. 2010, 25, 338–348. [Google Scholar] [CrossRef]
- Hsu, T.; Hung, L.; Tang, J. The multiple criteria and sub-criteria for electronic service quality evaluation. Online Inf. Rev. 2012, 36, 241–260. [Google Scholar] [CrossRef]
- Hung, Y.; Huang, M.; Chen, K. Service quality evaluation by service quality performance matrix. Total Qual. Manag. Bus. Excell. 2003, 14, 79–89. [Google Scholar] [CrossRef]
- Akdag, H.; Kalaycı, T.; Karagöz, S.; Zülfikar, H.; Giz, D. The evaluation of hospital service quality by fuzzy MCDM. Appl. SoftComput. 2014, 23, 239–248. [Google Scholar] [CrossRef]
- Tsaur, S.; Chang, T.; Yen, C. The evaluation of airline service quality by fuzzy MCDM. Tour. Manag. 2002, 23, 107–115. [Google Scholar] [CrossRef]
- Parasuraman, A.; Leonard, L.; Valarie, A. SERVQUAL: A multiple-item scale for measuring consumer perceptions of service quality. J. Retail. 1988, 64, 12–40. [Google Scholar]
- Chou, C.; Ding, J. Application of an integrated model with MCDM and IPA to evaluate the service quality of transshipment port. Math. Probl. Eng. 2013, 2013, 656757. [Google Scholar] [CrossRef]
- Bakir, M.; Akan, Ş.; Durmaz, E. Exploring service quality of low-cost airlines in Europe: An integrated MCDM approach. Econ. Bus. Rev. 2019, 5, 109–130. [Google Scholar] [CrossRef]
- Chen, I. A combined MCDM model based on DEMATEL and ANP for the selection of airline service quality improvement criteria: A study based on the Taiwanese airline industry. J. Air Transp. Manag. 2016, 57, 7–18. [Google Scholar] [CrossRef]
- Zoraghi, N.; Amiri, M.; Talebi, G.; Zowghi, M. A fuzzy MCDM model with objective and subjective weights for evaluating service quality in hotel industries. J. Ind. Eng. Int. 2013, 9, 38. [Google Scholar] [CrossRef] [Green Version]
- Chang, P.; Lee, E. Ranking of fuzzy sets based on the concept of existence. Comput. Math. Appl. 1994, 29, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C. A new approach for ranking fuzzy numbers by distance method. Fuzzy Sets Syst. 1998, 95, 307–317. [Google Scholar] [CrossRef]
- Tsai, J.; Ding, J.; Liang, G.; Ye, K. Use of a hybrid MCDM method to evaluate key solutions influencing service quality at a port logistics center in Taiwan. Brodogradnja 2017, 69, 89–105. [Google Scholar] [CrossRef]
- Stević, Ž.; Tanackov, I.; Puška, A.; Jovanov, G.; Vasiljević, J.; Lojaničić, D. Development of modified SERVQUAL–MCDM model for quality determination in reverse logistics. Sustainability 2021, 13, 5734. [Google Scholar] [CrossRef]
- Kuo, M.; Liang, G. Combining VIKOR with GRA techniques to evaluate service quality of airports under fuzzy environment. Expert Syst. Appl. 2011, 38, 1304–1312. [Google Scholar] [CrossRef]
- Abdolvand, M.; Taghipouryan, M. Evaluation of customs service quality by using fuzzy SERVQUAL and fuzzy MCDM. Am. J. Sci. Res. 2011, 35, 89–103. [Google Scholar]
- Ammar, S.; Saleh, Y. Grey relational evaluation of bulk water provision service quality using the SERVQUAL framework. Int. J. Public Adm. 2021, 1–16. [Google Scholar] [CrossRef]
- Pamucar, D.; Chatterjee, K.; Zavadskas, E. Assessment of third-party logistics provider using multi-criteria decision-making approach based on interval rough numbers. Comput. Ind. Eng. 2019, 127, 383–407. [Google Scholar] [CrossRef]
- Altuntas, S.; Dereli, T.; Yilmaz, M. Multi-criteria decision-making methods based weighted SERVQUAL scales to measure perceived service quality in hospitals: A case study from Turkey. Total Qual. Manag. Bus. Excell. 2012, 23, 1379–1395. [Google Scholar] [CrossRef]
- Buckley, J.; Eslami, E. An Introduction to Fuzzy Logic and Fuzzy Sets; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Hwang, C.L.; Yoon, K. Multiple Attribute Decision Making: Methods and Applications; Springer: New York, NY, USA, 1981. [Google Scholar]
- Yoon, K. A reconciliation among discrete compromise solutions. J. Oper. Res. Soc. 1987, 38, 277–286. [Google Scholar] [CrossRef]
- Hwang, C.; Lai, Y.; Liu, T. A new approach for multiple objective decision making. Comput. Oper. Res. 1993, 20, 889–899. [Google Scholar] [CrossRef]
Dimension | Criteria | Specific Meaning |
---|---|---|
Tangibility (D1) | PL1 | Modernized facilities |
PL2 | Attractive facilities | |
PL3 | Suitable facilities | |
Reliability (D2) | PL4 | Able to deal with the required order |
PL5 | Reliable staff | |
PL6 | Reliable and trustworthy brand | |
PL7 | Timely service | |
PL8 | Data confidentiality | |
Responsiveness (D3) | PL9 | Precise time-span of service |
PL10 | Timely service providers | |
Assurance (D4) | PL11 | Experienced staff |
PL12 | Good service experience | |
PL13 | Reliable support | |
Empathy (D5) | PL14 | Can provide customized service |
PL15 | Understands customer demand |
No. | Criteria | Fuzzy Geometric Mean of Each Row | Fuzzy Weights | BNP | Weight | ||||
---|---|---|---|---|---|---|---|---|---|
1 | PL01 | 0.8116 | 1.1200 | 1.5201 | 0.0383 | 0.0729 | 0.1372 | 0.0828 | 0.0723 |
2 | PL02 | 0.8173 | 1.1560 | 1.5768 | 0.0386 | 0.0752 | 0.1424 | 0.0854 | 0.0746 |
3 | PL03 | 0.9274 | 1.2817 | 1.7240 | 0.0438 | 0.0834 | 0.1556 | 0.0943 | 0.0823 |
4 | PL04 | 0.8354 | 1.1967 | 1.6521 | 0.0394 | 0.0779 | 0.1492 | 0.0888 | 0.0776 |
5 | PL05 | 1.0371 | 1.4940 | 2.0668 | 0.0490 | 0.0972 | 0.1866 | 0.1109 | 0.0969 |
6 | PL06 | 0.6783 | 0.9230 | 1.2584 | 0.0320 | 0.0601 | 0.1136 | 0.0686 | 0.0599 |
7 | PL07 | 0.6064 | 0.8421 | 1.1819 | 0.0286 | 0.0548 | 0.1067 | 0.0634 | 0.0554 |
8 | PL08 | 0.7451 | 1.0543 | 1.4472 | 0.0352 | 0.0686 | 0.1307 | 0.0782 | 0.0683 |
9 | PL09 | 0.7875 | 1.1047 | 1.5076 | 0.0372 | 0.0719 | 0.1361 | 0.0817 | 0.0714 |
10 | PL10 | 0.6650 | 0.9298 | 1.3039 | 0.0314 | 0.0605 | 0.1177 | 0.0699 | 0.0610 |
11 | PL11 | 0.5740 | 0.7671 | 1.0652 | 0.0271 | 0.0499 | 0.0962 | 0.0577 | 0.0504 |
12 | PL12 | 0.9120 | 1.2467 | 1.6947 | 0.0431 | 0.0811 | 0.1530 | 0.0924 | 0.0807 |
13 | PL13 | 0.5741 | 0.7595 | 1.0524 | 0.0271 | 0.0494 | 0.0950 | 0.0572 | 0.0499 |
14 | PL14 | 0.5216 | 0.6983 | 1.0025 | 0.0246 | 0.0455 | 0.0905 | 0.0535 | 0.0468 |
15 | PL15 | 0.5835 | 0.7895 | 1.1236 | 0.0276 | 0.0514 | 0.1014 | 0.0601 | 0.0525 |
A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | A10 | |
---|---|---|---|---|---|---|---|---|---|---|
PL01 | 0.3143 | 0.2750 | 0.3536 | 0.3536 | 0.2750 | 0.3143 | 0.3536 | 0.3536 | 0.2750 | 0.2750 |
PL02 | 0.3451 | 0.2684 | 0.3451 | 0.3451 | 0.3068 | 0.3451 | 0.3068 | 0.3451 | 0.2684 | 0.2684 |
PL03 | 0.3536 | 0.3143 | 0.3143 | 0.3143 | 0.2750 | 0.3143 | 0.2357 | 0.3536 | 0.3536 | 0.3143 |
PL04 | 0.2935 | 0.3354 | 0.2935 | 0.3354 | 0.3773 | 0.2515 | 0.2935 | 0.2935 | 0.3354 | 0.3354 |
PL05 | 0.3451 | 0.2684 | 0.3068 | 0.3068 | 0.3451 | 0.2684 | 0.3451 | 0.2684 | 0.3451 | 0.3451 |
PL06 | 0.3333 | 0.2593 | 0.2963 | 0.3333 | 0.3333 | 0.3333 | 0.3333 | 0.2593 | 0.3333 | 0.3333 |
PL07 | 0.2971 | 0.3343 | 0.3343 | 0.3343 | 0.2971 | 0.3343 | 0.2971 | 0.3343 | 0.2971 | 0.2971 |
PL08 | 0.2750 | 0.3536 | 0.3536 | 0.3143 | 0.2750 | 0.3143 | 0.2750 | 0.3536 | 0.3536 | 0.2750 |
PL09 | 0.3414 | 0.3035 | 0.3035 | 0.2655 | 0.3414 | 0.2655 | 0.3414 | 0.3035 | 0.3414 | 0.3414 |
PL10 | 0.2825 | 0.2825 | 0.2825 | 0.3229 | 0.3632 | 0.3229 | 0.3632 | 0.2825 | 0.3229 | 0.3229 |
PL11 | 0.2655 | 0.3414 | 0.3035 | 0.3414 | 0.3414 | 0.3035 | 0.3035 | 0.3414 | 0.2655 | 0.3414 |
PL12 | 0.2593 | 0.3333 | 0.3333 | 0.3333 | 0.2963 | 0.3333 | 0.2593 | 0.3333 | 0.3333 | 0.3333 |
PL13 | 0.2754 | 0.3148 | 0.3541 | 0.3148 | 0.2754 | 0.3541 | 0.2754 | 0.3148 | 0.3541 | 0.3148 |
PL14 | 0.2940 | 0.2940 | 0.3360 | 0.2940 | 0.3780 | 0.3360 | 0.2940 | 0.2940 | 0.3360 | 0.2940 |
PL15 | 0.2820 | 0.3626 | 0.2820 | 0.2820 | 0.3223 | 0.2820 | 0.3626 | 0.3626 | 0.2820 | 0.3223 |
A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | A10 | |
---|---|---|---|---|---|---|---|---|---|---|
PL01 | 0.0227 | 0.0199 | 0.0256 | 0.0256 | 0.0199 | 0.0227 | 0.0256 | 0.0256 | 0.0199 | 0.0199 |
PL02 | 0.0257 | 0.0200 | 0.0257 | 0.0257 | 0.0229 | 0.0257 | 0.0229 | 0.0257 | 0.0200 | 0.0200 |
PL03 | 0.0291 | 0.0259 | 0.0259 | 0.0259 | 0.0226 | 0.0259 | 0.0194 | 0.0291 | 0.0291 | 0.0259 |
PL04 | 0.0228 | 0.0260 | 0.0228 | 0.0260 | 0.0293 | 0.0195 | 0.0228 | 0.0228 | 0.0260 | 0.0260 |
PL05 | 0.0334 | 0.0260 | 0.0297 | 0.0297 | 0.0334 | 0.0260 | 0.0334 | 0.0260 | 0.0334 | 0.0334 |
PL06 | 0.0200 | 0.0155 | 0.0177 | 0.0200 | 0.0200 | 0.0200 | 0.0200 | 0.0155 | 0.0200 | 0.0200 |
PL07 | 0.0164 | 0.0185 | 0.0185 | 0.0185 | 0.0164 | 0.0185 | 0.0164 | 0.0185 | 0.0164 | 0.0164 |
PL08 | 0.0188 | 0.0241 | 0.0241 | 0.0215 | 0.0188 | 0.0215 | 0.0188 | 0.0241 | 0.0241 | 0.0188 |
PL09 | 0.0244 | 0.0217 | 0.0217 | 0.0190 | 0.0244 | 0.0190 | 0.0244 | 0.0217 | 0.0244 | 0.0244 |
PL10 | 0.0172 | 0.0172 | 0.0172 | 0.0197 | 0.0222 | 0.0197 | 0.0222 | 0.0172 | 0.0197 | 0.0197 |
PL11 | 0.0134 | 0.0172 | 0.0153 | 0.0172 | 0.0172 | 0.0153 | 0.0153 | 0.0172 | 0.0134 | 0.0172 |
PL12 | 0.0209 | 0.0269 | 0.0269 | 0.0269 | 0.0239 | 0.0269 | 0.0209 | 0.0269 | 0.0269 | 0.0269 |
PL13 | 0.0138 | 0.0157 | 0.0177 | 0.0157 | 0.0138 | 0.0177 | 0.0138 | 0.0157 | 0.0177 | 0.0157 |
PL14 | 0.0137 | 0.0137 | 0.0157 | 0.0137 | 0.0177 | 0.0157 | 0.0137 | 0.0137 | 0.0157 | 0.0137 |
PL15 | 0.0148 | 0.0190 | 0.0148 | 0.0148 | 0.0169 | 0.0148 | 0.0190 | 0.0190 | 0.0148 | 0.0169 |
Alternatives | Si+ | Si− | Ci | Ranking |
---|---|---|---|---|
A1 | 0.0144 | 0.0158 | 0.5236 | 7 |
A2 | 0.0146 | 0.0140 | 0.4907 | 8 |
A3 | 0.0113 | 0.0153 | 0.5750 | 4 |
A4 | 0.0107 | 0.0159 | 0.5984 | 2 |
A5 | 0.0120 | 0.0169 | 0.5847 | 3 |
A6 | 0.0154 | 0.0134 | 0.4646 | 10 |
A7 | 0.0157 | 0.0142 | 0.4739 | 9 |
A8 | 0.0130 | 0.0168 | 0.5644 | 6 |
A9 | 0.0111 | 0.0182 | 0.6218 | 1 |
A10 | 0.0122 | 0.0159 | 0.5660 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luyen, L.A.; Thanh, N.V. Logistics Service Provider Evaluation and Selection: Hybrid SERVQUAL–FAHP–TOPSIS Model. Processes 2022, 10, 1024. https://doi.org/10.3390/pr10051024
Luyen LA, Thanh NV. Logistics Service Provider Evaluation and Selection: Hybrid SERVQUAL–FAHP–TOPSIS Model. Processes. 2022; 10(5):1024. https://doi.org/10.3390/pr10051024
Chicago/Turabian StyleLuyen, Le Anh, and Nguyen Van Thanh. 2022. "Logistics Service Provider Evaluation and Selection: Hybrid SERVQUAL–FAHP–TOPSIS Model" Processes 10, no. 5: 1024. https://doi.org/10.3390/pr10051024