On Approximation by Linear Combinations of Modified Summation Operators of Integral Type in Orlicz Spaces
Abstract
1. Introduction and Main Results
2. Proof of the Direct Theorem
3. Proofs of the Inverse and Equivalent Theorems
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bardaro, C.; Mantellini, I. On convergence properties for a class of Kantorovich discrete operators. Numer. Funct. Anal. Optim. 2012, 33, 374–396. [Google Scholar] [CrossRef]
- Costarelli, D.; Vinti, G. Convergence for a family of neural network operators in Orlicz spaces. Math. Nachr. 2017, 290, 226–235. [Google Scholar] [CrossRef]
- Costarelli, D.; Vinti, G. Convergence results for a family of Kantorovich max-product neural network operators in a multivariate setting. Math. Slovaca 2017, 67, 1469–1480. [Google Scholar] [CrossRef]
- Qi, F.; Lim, D.; Guo, B.-N. Explicit formulas and identities for the Bell polynomials and a sequence of polynomials applied to differential equations. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 2018. [Google Scholar] [CrossRef]
- Qi, F.; Niu, D.-W.; Guo, B.-N. Some identities for a sequence of unnamed polynomials connected with the Bell polynomials. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 2018, 112. [Google Scholar] [CrossRef]
- Yao, Y.; Qin, X.; Yao, J.-C. Projection methods for firmly type nonexpansive operators. J. Nonlinear Convex Anal. 2018, 19, 407–415. [Google Scholar]
- Yao, Y.; Yao, J.-C.; Liou, Y.-C.; Postolache, M. Iterative algorithms for split common fixed points of demicontractive operators without priori knowledge of operator norms. Carpathian J. Math. 2018, 34, 459–466. [Google Scholar]
- Ueki, S.-I. On the Li-Stević integral type operators from weighted Bergman spaces into β-Zygmund spaces. Integral Equ. Oper. Theory 2012, 74, 137–150. [Google Scholar] [CrossRef]
- Li, H.; Ma, T. Products of composition operators and integral-type operators from Zygmund-type spaces to QK spaces. Math. Notes 2016, 99, 261–271. [Google Scholar] [CrossRef]
- Liang, Y.-X. Integral-type operators from F(p, q, s) space to α-Bloch-Orlicz and β-Zygmund-Orlicz spaces. Complex Anal. Oper. Theory 2018, 12, 169–194. [Google Scholar] [CrossRef]
- Gupta, V.; Yadav, R. Approximation by complex summation-integral type operator in compact disks. Math. Slovaca 2013, 63, 1025–1036. [Google Scholar] [CrossRef]
- Vural, İ; Altın, B.; Yüksel, İ. Schurer generalization of q-hybrid summation integral type operators. In Computational Analysis; Springer Proceedings in Mathematics & Statistics; Springer: Cham, Switzerland, 2016; pp. 179–194. [Google Scholar] [CrossRef]
- Govil, N.K.; Gupta, V. Simultaneous Approximation for Stancu-Type Generalization of Certain Summation-Integral-Type Operators. In Analytic Number Theory, Approximation Theory, and Special Functions; Springer: New York, NY, USA, 2014; pp. 531–548. [Google Scholar]
- Srivastava, H.M.; Gupta, V. A certain family of summation-integral type operators. Math. Comput. Model. 2003, 37, 1307–1315. [Google Scholar] [CrossRef]
- Gupta, V.; Mohapatra, R.N.; Finta, Z. A certain family of mixed summation-integral type operators. Math. Comput. Model. 2005, 42, 181–191. [Google Scholar] [CrossRef]
- Han, L.X.; Wu, G. Approximation by modified summation integral type operators in Orlicz spaces. Math. Appl. 2017, 30, 613–622. [Google Scholar]
- Rao, M.M.; Ren, Z.D. Theory of Orlicz Space; Monographs and Textbooks in Pure and Applied Mathematics, 146; Marcel Dekker, Inc.: New York, NY, USA, 1991. [Google Scholar]
- Han, L.X.; Wu, G. Strong converse inequality of Jacobi weighted simultaneous approximation for gamma operators in Orlicz spaces (0, ∞). Appl. Math. J. Chin. Univ. Ser. A 2016, 31, 366–378. (In Chinese) [Google Scholar]
- Ditzian, Z.; Totik, V. Moduli of Smoothness; Springer Series in Computational Mathematics, 9; Springer: New York, NY, USA, 1987. [Google Scholar] [CrossRef]
- Costarelli, D.; Spigler, R. How sharp is the Jensen inequality? J. Inequal. Appl. 2015, 2015, 69. [Google Scholar] [CrossRef]
- van Wickeren, E. Weak-type inequalities for Kantorovitch polynomials and related operators. Nederl. Akad. Wetensch. Indag. Math. 1987, 90, 111–120. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, L.-X.; Qi, F. On Approximation by Linear Combinations of Modified Summation Operators of Integral Type in Orlicz Spaces. Mathematics 2019, 7, 6. https://doi.org/10.3390/math7010006
Han L-X, Qi F. On Approximation by Linear Combinations of Modified Summation Operators of Integral Type in Orlicz Spaces. Mathematics. 2019; 7(1):6. https://doi.org/10.3390/math7010006
Chicago/Turabian StyleHan, Ling-Xiong, and Feng Qi. 2019. "On Approximation by Linear Combinations of Modified Summation Operators of Integral Type in Orlicz Spaces" Mathematics 7, no. 1: 6. https://doi.org/10.3390/math7010006
APA StyleHan, L.-X., & Qi, F. (2019). On Approximation by Linear Combinations of Modified Summation Operators of Integral Type in Orlicz Spaces. Mathematics, 7(1), 6. https://doi.org/10.3390/math7010006