Next Article in Journal
Sustainability of Information Security Investment in Online Social Networks: An Evolutionary Game-Theoretic Approach
Previous Article in Journal
Path Planning for Aircraft Fleet Launching on the Flight Deck of Carriers
Previous Article in Special Issue
The Analytical Solution for the Black-Scholes Equation with Two Assets in the Liouville-Caputo Fractional Derivative Sense
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

A Reliable Method for Solving Fractional Sturm–Liouville Problems

by
M. M. Khashshan
1,
Muhammed I. Syam
2,* and
Ahlam Al Mokhmari
2
1
Department of Mathematics, Teachers College, King Saud University, Riyadh 4545, Saudi Arabia
2
Department of Mathematical Sciences, United Arab Emirates University, Al Ain 15551, UAE
*
Author to whom correspondence should be addressed.
Mathematics 2018, 6(10), 176; https://doi.org/10.3390/math6100176
Submission received: 18 August 2018 / Revised: 23 August 2018 / Accepted: 30 August 2018 / Published: 26 September 2018
(This article belongs to the Special Issue Advances in Differential and Difference Equations with Applications)

Abstract

:
In this paper, a reliable method for solving fractional Sturm–Liouville problem based on the operational matrix method is presented. Some of our numerical examples are presented.

1. Introduction

The Sturm–Liouville theory plays an important role for the development of spectral methods and the theory of self-adjoint operators [1]. Several applications on SLPs are studied as boundary-value problems [2]. The Sturm–Liouville eigenvalue problem has played an important role in modeling many physical problems. The theory of the problem is well developed and many results have been obtained concerning the eigenvalues and corresponding eigenfunctions. It should be noted that, since finding analytical solutions for this problem is an extremely difficult task, several numerical algorithms have been developed to seek approximate solutions. However, to date, mostly integer-order differential operators in SLPs have been used, and such operators do not include any fractional differential operators. Fractional calculus is a theory which unifies and generalizes the notions of integer-order differentiation and integration to any real order [3,4,5].
Recently, the fractional Sturm–Liouville problems were formulated in [6,7]. Authors in these papers considered several types of the fractional Sturm–Liouville equations and they investigated the eigenvalues and eigenfunctions properties of the fractional Sturm–Liouville operators.
Djrbashian [8] studied the existence of a solution to the fractional boundary value problem. In [9], authors discussed the aforementioned relation between eigenvalues and zeros of Mittag–Leffler function. In [10], they used the Homotopy Analysis method while, in [11], they used the fractional differential transform method to compute the eigenvalues. In [12], researchers used the Fourier series to solve this problem while, in [13,14], they used the method of Haar wavelet operational matrix. In [15,16,17,18,19], researchers extended the scope of some spectral properties of fractional Sturm–Liouville problems. Variational methods and Inverse Laplace transform method were applied in [20,21], respectively. Recently, in [22], authors constructed numerical schemes using radial basis functions while, in [23], they used Galerkin finite element method for such problems. Greenberg and Marletta [24,25] developed their own code using Theta Matrices (SLEUTH). In [26], researchers implemented the iterated variation method.
In this article, we present a numerical technique for solving class of FSLPs of the form
D γ [ f ( t ) D γ y ( t ) ] + μ g ( t ) y ( t ) = h ( t ) , 0 t 1 , 1 2 < γ 1
subject to
c 0 y ( 0 ) + c 1 D γ y ( 0 ) = 0 , c 0 2 + c 1 2 > 0 ,
c 2 y ( 1 ) + c 3 D γ y ( 1 ) = 0 , c 2 2 + c 3 2 > 0 ,
where c 0 , c 1 , c 2 a n d c 3 are constants such that det c 0 c 1 c 2 c 3 0 , f ( t ) ,   g ( t ) , h ( t ) are continuous functions with f ( t ) , g ( t ) > 0 for all t [ 0 , 1 ] , and D γ is the Caputo derivative.
Next, we present some results related to the Caputo fractional derivative, as well as the definition of the fractional-order functions.
Definition 1.
The Rimann–Liouville fractional integral operator I γ of order γ > 0 on L 1 [ 0 , 1 ] is given by
I α y ( t ) = 1 Γ ( γ ) 0 t y ( s ) ( t s ) 1 γ d s , I 0 y ( t ) = y ( t ) ,
where Γ ( γ ) is the Euler Gamma functionv(see [5,27]).
For any γ , ζ 0 , and ζ > 1 , I α existsfor any t [ 0 , 1 ] and
I γ t ζ = Γ ( ζ + 1 ) Γ ( ζ + γ + 1 ) t ζ + γ .
Definition 2.
The Caputo fractional derivative of order γ is defined by
D γ y ( t ) = I n γ D l y ( t ) = 1 Γ ( l γ ) 0 t y ( l ) ( s ) ( t s ) γ l + 1 d s ,
provided that the integral exists, where l = γ + 1 , γ is the integer part of the positive real number γ , t > 0 .
For y L 1 [ 0 , 1 ] and γ 0 :
I γ D γ y ( t ) = y ( t ) r = 0 l 1 y ( r ) ( 0 + ) t r r ! ,
Let Δ n be defined by
Δ n = S p a n { 1 , t γ , t 2 γ , , t n γ } .
The inner product on the set Δ n is given by
f ( t ) , g ( t ) = 0 1 f ( t ) g ( t ) d t .
Theorem 1.
The sequence of functions defined as follows are orthogonal:
y i ( t ) = ( t γ a i ) y i 1 ( t ) b i y i 2 ( t ) , i = 2 , 3 ,
with y 0 ( t ) = 1 , y 1 ( t ) = t γ a 1 , and
a i = t γ y i 1 ( t ) , g ( t ) y i 1 ( t ) , y i 1 ( t ) , b i = t γ y i 1 ( t ) , y i 2 ( t ) y i 2 ( t ) , y i 2 ( t ) .
Proof. 
For i = 1 ,
y 1 ( t ) , y 0 ( t ) = t γ a 1 , y 0 ( t ) = t α , 1 t α , 1 1 , 1 1 , 1 = 0 .
Assume the result of the theorem is true for i > 1 . Then, for any j { 0 , 1 , , i 2 } , we have
y i + 1 ( t ) , y j ( t ) = ( t γ a i + 1 ) y i ( t ) b i + 1 y i 1 ( t ) , y j ( t ) = t γ y i ( t ) , y j ( t ) a i + 1 y i ( t ) , y j ( t ) b i + 1 y i 1 ( t ) , y j ( t ) = t γ y i ( t ) , y j ( t ) = y i ( t ) , t γ y j ( t ) = y i ( t ) , y j + 1 ( t ) + a j + 1 y j ( t ) + b j + 1 y j 1 ( t ) = y i ( t ) , y j + 1 ( t ) + a j + 1 y i ( t ) , y j ( t ) + b j + 1 y i ( t ) , y j 1 ( t ) = 0 .
For j = i 1 ,
y i + 1 ( t ) , y i 1 ( t ) = ( t γ a i + 1 ) y i ( t ) b i + 1 y i 1 ( t ) , y i 1 ( t ) = t γ y i ( t ) , y i 1 ( t ) a i + 1 y i ( t ) , y i 1 ( t ) b i + 1 ( y i 1 ( t ) , y i 1 ( t ) ) = t γ y i ( t ) , y i 1 ( t ) b i + 1 ( y i 1 ( t ) , y i 1 ( t ) ) = t γ y i ( t ) , y i 1 ( t ) t γ y i ( t ) , y i 1 ( t ) y i 1 ( t ) , y i 1 ( t ) ( y i 1 ( t ) , y i 1 ( t ) ) = 0 .

2. Operational Matrices of Fractional Integration

A set of l Block Pulse Functions (BPFs) in the interval [ 0 , 1 ) are given by { b 0 ( t ) , b 1 ( t ) , , b l 1 ( t ) } such that
b i ( t ) = 1 , i l t < i + 1 l 0 , o t h e r w i s e
for i = 0 , 1 , , l 1 . The following are some of the BPFs properties
b i ( t ) b j ( t ) = b i ( t ) , i = j 0 , i j
and
0 1 b i ( t ) b j ( t ) d t = 1 l , i = j 0 , i j .
If y L 2 [ 0 , 1 ] , then
y ( t ) = Y l 1 T B l 1 ( t )
where
Y l 1 = y 0 y 1 y l 1 , B l 1 ( t ) = b 0 ( t ) b 1 ( t ) b l 1 ( t ) ,
and
y i = l i l i + 1 l y ( t ) d t , i = 0 , 1 , l 1 .
Theorem 2.
Let I γ be the Rimann–Liouville functional operator. Then,
I γ B l 1 ( t ) = P l γ B l 1 ( t )
where
P l γ = 1 l γ 1 Γ ( γ + 2 ) 1 ε 1 ε 2 ε l 1 0 1 ε 1 . ε l 2 0 0 1 ε l 3 0 0 0 0 0 0 0 1
and ε r = ( r + 1 ) γ + 1 2 r γ + 1 + ( r 1 ) γ + 1 , r = 1 : l 1 .
Proof. 
For each i = 0 , 1 , , l 1 , we can write I γ b i as
I γ b i = j = 0 l 1 c i j b j ( t ) .
Multiply both sides by b r ( t ) , for 0 r l 1 , then integrate both sides to get
c i r = r r l r + 1 l I γ b i ( t ) d t = r Γ ( γ ) r l r + 1 l 0 t b i ( t ) ( t t ) 1 γ d t d t . = 0 , i > r 0 1 , i = r ( r + 1 ) γ + 1 2 r γ + 1 + ( r 1 ) γ + 1 i < r l 1 .
For more details, see [28,29]. □
Theorem 3.
Let Y M 1 ( t ) = y 0 ( t ) y 1 ( t ) y M 1 ( t ) . Then, there exists an M × l matrix Q γ such that
Y M 1 ( t ) = Q M × l γ B l 1 ( t )
where
( Q M × l γ ) i , k = l k l k + 1 l y i ( t ) d t
for i = 0 : M 1 and k = 0 : l 1 .
Proof. 
It is easy to see that y i ( t ) L 2 [ 0 , 1 ) , for each i = 0 : M 1 . Using Equations (10) and (11), we get
Y M 1 ( t ) = Q M × l γ B l 1 ( t )
where
( Q M × l γ ) i , k = l k l k + 1 l y i ( t ) d t .
for i = 0 : M 1 and k = 0 : l 1 which ends the proof.
From now on, let M = l . □
Theorem 4.
If 0 < γ < 1 , then Q l × l γ is nonsingular matrix.
Proof. 
Theorem 3 implies that
Y l 1 ( t ) Y l 1 ( t ) T = Q l × l γ B l 1 ( t ) B l 1 ( t ) T Q l × l γ T .
Integrate both sides with respect to t on (0,1) to get
0 1 Y l 1 ( t ) Y l 1 ( t ) T d t = Q l × l γ 0 1 B l 1 ( t ) B l 1 ( t ) T d t Q l × l γ T .
Theorem 1 and Equation (9) yield
D 1 = Q l × l γ D 2 Q l × l γ T
where
D 1 = 0 1 y 0 ( t ) y 0 ( t ) d t 0 0 0 0 1 y 1 ( t ) y 1 ( t ) d t 0 0 0 0 1 y l 1 ( t ) y l 1 ( t ) d t
and
D 2 = 1 γ 1 l γ 0 0 0 2 γ 1 l γ 0 0 0 l γ ( l 1 ) γ l γ .
Then, det ( D 1 ) > 0 and det ( D 2 ) > 0 . Equation (14) gives
det ( Q l × l γ ) 2 = det ( D 1 ) det ( D 2 ) > 0 .
Thus, Q l × l γ is nonsingular. □

Operational Matrix of Fractional Integration

If y C 1 [ 0 , 1 ] , then
y ( t ) = k = 0 u k y k ( t )
where
u k = 0 1 u ( t ) y k ( t ) d t 0 1 f k ( t ) y k ( t ) d t .
Approximate the function y ( t ) by
U l 1 ( t ) = k = 0 l 1 u y k ( t ) = U T Y l 1 ( t ) ,
where
U = u 0 u 1 u l 1 and Y l 1 ( t ) = y 0 ( t ) y 1 ( t ) y l 1 ( t ) .
Theorem 5.
I γ Y l 1 ( t ) = H l γ Y l 1 ( t )
where
H l γ = Q l × l γ P l γ ( Q l × l γ ) 1
Proof. 
Let H l γ be given by
I γ Y l 1 ( t ) = H l γ Y l 1 ( t ) .
From Equations (13) and (17), we get
I γ Y l 1 ( t ) = H l γ Y l 1 ( t ) = H l γ Q l × l γ B l 1 ( t )
and
I γ Y l 1 ( t ) = I γ Q l × l γ B l 1 ( t ) = Q l × l γ I γ B l 1 ( t ) = Q l × l γ P l γ B l 1 ( t ) .
Combining Equations (18) and (19), we get
H l γ Q l × l γ B l 1 ( t ) = Q l × l γ P l γ B l 1 ( t ) .
Therefore,
H l γ = Q l × l γ P l γ ( Q l × l γ ) 1 .

3. Method of Solution

Using Equations (10) and (13), we get
D γ [ f ( t ) D γ y ( t ) ] = U T Y l 1 ( t ) = U T Q l × l γ B l 1 ( t ) .
Thus,
f ( t ) D γ y ( t ) f ( 0 ) ϖ = I γ U T Y l 1 ( t )
where ϖ = D γ y ( 0 ) . Theorem 5 and Equations (10) and (13) imply that
D γ y ( t ) = 1 f ( t ) U T I γ Y l 1 ( t ) + f ( 0 ) ϖ = 1 f ( t ) U T H l γ Y l 1 ( t ) + f ( 0 ) ϖ = U T H l γ Q l × l γ B m l 1 ( t ) f ( t ) + f ( 0 ) ϖ f ( t ) = U T H l γ Q l × l γ b 0 ( t ) / f ( t ) b 1 ( t ) / f ( t ) b l 1 ( t ) / f ( t ) + f ( 0 ) ϖ 1 / f ( t ) 1 / f ( t ) 1 / f ( t ) .
Hence,
D γ y ( t ) = U T H l γ Q l × l γ P F 1 + f ( 0 ) ϖ F 2 B l 1 ( t )
Thus,
y ( t ) = U T H l γ Q l × l γ F 1 + f ( 0 ) ϖ F 2 I γ B l 1 ( t ) + ψ
where ψ = y ( 0 ) . Therefore,
y ( t ) = U T H l γ Q l × l γ F 1 + f ( 0 ) ϖ F 2 Y l γ B l 1 ( t ) + ψ .
Hence,
U T Q l × l γ B m 1 ( t ) + μ g ( t ) U T H l γ Q l × l γ F 1 + f ( 0 ) ϖ F 2 F Y l γ B l 1 ( t ) + ψ = h ( t )
or
U T ( Q l × l γ + μ q ( t ) H l γ Q l × l γ F 1 Y l γ ) B l 1 ( t ) = h ( t ) μ g ( t ) f ( 0 ) ϖ F 2 Y l γ B l 1 ( t ) μ ψ g ( t ) .
Using the boundary conditions in Equations (2) and (3), we get the following cases
  • if c 0 = 0 , ϖ = 0 , c 1 0 , c 2 0 , and
    ψ = c 2 U T H l γ Q l × m γ F 1 Y l γ B l 1 ( 1 ) c 3 c 2 U T H l γ Q l × l γ P F 1 B l 1 ( 1 )
  • if c 0 0 , ψ = c 1 c 0 ϖ and
    ϖ = c 2 U T H l γ Q l × l γ F 1 Y l γ B l 1 ( 1 ) c 3 U T H l γ Q l × l γ Y 1 B l 1 ( 1 ) f ( 0 ) F 2 Y l γ B l 1 ( 1 ) c 1 c 2 c 0 + c 3 f ( 0 ) Y 2 B l 1 ( 1 ) .
Thus,
U T Q l × l γ + μ g ( t ) H l γ Q l × l γ F 1 Y l γ B l 1 ( t ) + μ g ( t ) f ( 0 ) F 2 Y l γ B l 1 ( t ) c 1 c 0 μ g ( t ) c 2 H l γ Q l × l γ F 1 Y l γ B l 1 ( 1 ) c 3 H l γ Q l × l γ F 1 B l 1 ( 1 ) f ( 0 ) F 2 F l γ B l 1 ( 1 ) c 1 c 2 c 0 + c 3 f ( 0 ) F 2 B l 1 ( 1 ) = h ( t ) .
We use the collocation points
t i = r + 1 l + 1 , i = 0 : l 1 .
Substitute these values into Equation (23) and take the transpose of both sides to get a system of linear equations in terms of U of the form
G ( μ ) U = R .
To have a nonzero solution to the system in Equation (24), G ( μ ) must be nonsingular. Thus,
det ( G ( μ ) ) = 0 .
Therefore, we find the eigenvalues from Equation (25) and we find the corresponding eigenfunctions from Equation (21).

4. Numerical Results

We present two examples for l = 16 . In this paper, we focus only on the eigenvalues.
Example 1.
Consider
D γ [ D γ y ( t ) ] + μ y ( t ) = 0 , t [ 0 , 1 ] , γ ( 0.5 , 1 ] ,
y ( 0 ) = 0 , y ( 1 ) = 0 .
Using the procedure described in the previous section, the generated eigenvalues are reported in Table 1.
For γ = 1 , the exact eigenvalues are well-known and they are given by
μ n = n 2 π 2 , n = 1 , 2 , 3 , .
It is worth mentioning that the eigenvalues of the problem in this example approach to n 2 π 2 when γ approaches to 1. Let
δ i , j = 0 1 y i ( t ) y j ( t ) d t .
For γ = 0.75 , δ 1 , 2 = 5.7 × 10 16 . Sample of these values for γ = 0.95 are given as
δ 1 , 2 = 5.7 × 10 16 , δ 4 , 6 = 2.6 × 10 16 , δ 1 , 6 = 8.3 × 10 16 .
Similarly, for γ = 0.99 ,
δ 1 , 2 = 3.1 × 10 16 , δ 4 , 6 = 4.2 × 10 16 , δ 1 , 7 = 2.0 × 10 16 .
This means the orthogonality relation holds. We notice that the eigenvalues satisfy the increasing property.
Example 2.
Consider
D α [ D α y ( t ) ] + λ ( 1 + t α ) y ( t ) = 0 , t [ 0 , 1 ] , γ ( 0.5 , 1 ] ,
u ( 0 ) = 0 , u ( 1 ) = 0 .
Using the procedure described in the previous section, the generated eigenvalues are reported in Table 2.
Let
δ i , j = 0 1 y i ( t ) y j ( t ) g ( t ) d t .
For γ = 0.502 , δ 1 , 2 = 3.3 × 10 16 and δ 2 , 4 = 4.9 × 10 16 . Samples of these values for γ = 0.75 are given as
δ 1 , 2 = 2.2 × 10 16 , δ 4 , 5 = 4.1 × 10 16 , δ 1 , 5 = 6.9 × 10 16 .
Similarly, for γ = 0.95 ,
δ 1 , 2 = 1.2 × 10 16 , δ 4 , 6 = 2.1 × 10 16 , δ 1 , 7 = 4.6 × 10 16 .
This means the orthogonality relation holds. We notice that the eigenvalues satisfy the property
μ 1 μ 2 .

5. Conclusions

In this article, a reliable method for solving fractional Sturm–Liouville problem based on the operational matrix method is presented. Two of our numerical examples are presented. From the previous discussion, we notice the following.
  • From previous section, we can find the eigenvalues with the following property
    λ 1 < λ 2 < λ 3 < < λ n < .
  • From previous section, the orthogonality property
    0 1 y i ( t ) y j ( t ) q ( t ) = 0 , i j
    holds.
  • The proposed method can be generalized to other applications in Physics and Engineering.

Author Contributions

All authors have the same contributions.

Funding

This research received no external funding.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Amrein, W.O.; Hinz, A.M.; Pearson, D.B. Sturm-Liouville Theory: Pastand Present; Birkhäuser: Basel, Switzerland, 2005. [Google Scholar]
  2. Zettl, A. Sturm-Liouville Theory; American Mathematical Society: Providence, RI, USA, 2010; Volume 121. [Google Scholar]
  3. Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; John Wiley and Sons, Inc.: New York, NY, USA, 1993. [Google Scholar]
  4. Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
  5. Kilbass, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
  6. Klimek, M.; Agrawal, O.P. Fractional Sturm Liouville problem. Comput. Math. Appl. 2013, 66, 795–812. [Google Scholar] [CrossRef]
  7. Rivero, M.; Trujillo, J.J.; Velasco, M.P. A fractional approach to the Sturm-Liouville problem. Cent. Eur. J. Phys. 2013, 11, 1246–1254. [Google Scholar] [CrossRef] [Green Version]
  8. Djrbashian, M.M. A boundary value problem for a Sturm-Liouville type differential operator of fractional order. Izv. Akad. Nauk Armjan. SSR Ser. Mat. 1970, 5, 71–96. [Google Scholar]
  9. Nahusev, A.M. The Sturm-Liouville problem for a second order ordinary differential equation with fractional derivatives in the lower terms. Dokl. Akad. Nauk SSSR 1977, 234, 308–311. [Google Scholar]
  10. Syam, M.I.; Siyyam, H.I. An efficient technique for finding the eigenvalues of fourth-order Sturm-Liouville problems. Chaos Solitons Fractals 2009, 39, 659–665. [Google Scholar] [CrossRef]
  11. Khan, J.A.; Raja, M.A.Z.; Syam, M.I.; Tanoli, S.A.K.; Awan, S.E. Design and application of nature inspired computing approach for nonlinear stiff oscillatory problems. Neural Comput. Appl. 2015, 26, 1763–1780. [Google Scholar] [CrossRef]
  12. El-Sayed, M.F.; Syam, M.I. Electrohydrodynamic instability of a dielectric compressible liquid sheet streaming into an ambient stationary compressible gas. Arch. Appl. Mech. 2007, 77, 613–626. [Google Scholar] [CrossRef]
  13. Attili, B.S.; Furati, K.; Syam, M.I. An efficient implicit Runge-Kutta method for second order systems. Appl. Math. Comput. 2006, 178, 229–238. [Google Scholar] [CrossRef]
  14. Syam, M.I.; Siyyam, H.I. Numerical differentiation of implicitly defined curves. J. Comput. Appl. Math. 1999, 108, 131–144. [Google Scholar] [CrossRef]
  15. Raja, M.A.Z.; Shah, F.H.; Alaidarous, E.S.; Syam, M.I. Design of bio-inspired heuristic technique integrated with interior-point algorithm to analyze the dynamics of heartbeat model. Appl. Soft Comput. J. 2017, 52, 605–629. [Google Scholar] [CrossRef]
  16. Attili, B.S.; Syam, M.I. Efficient shooting method for solving two point boundary value problems. Chaos Soliton Fractals 2008, 35, 895–903. [Google Scholar] [CrossRef]
  17. Syam, M.I. The modified Broyden-variational method for solving nonlinear elliptic differential equations, Journal of Function Spaces and Applications. Chaos Soliton Fractals 2007, 32, 392–404. [Google Scholar] [CrossRef]
  18. Syam, M.I.; Attili, B.S. Numerical solution of singularly perturbed fifth order two point boundary value problem. Appl. Math. Comput. 2005, 170, 1085–1094. [Google Scholar] [CrossRef]
  19. Aboelenen, T.; El-Hawary, H.M. Spectral Theory and Numerical Approximation for Singular Fractional Sturm-Liouville eigen-Problems on Unbounded Domain. arXiv, 2014; arXiv:1410.1583v4. [Google Scholar]
  20. Klimek, M.; Odzijewicz, T.; Malinowska, A.B. Variational Methods for the Fractional Sturm-Liouville Problem. J. Math. Anal. Appl. 2014, 416, 402–426. [Google Scholar] [CrossRef]
  21. Saei, F.D.; Abbasi, S.; Mirzayi, Z. Inverse Laplace transform method for multiple solutions of the fractional Sturm-Liouville problems. Comput. Methods Differ. Equ. 2014, 2, 56–61. [Google Scholar]
  22. Antunes, P.; Ferreira, R. An augmented—RBE method for solving fractional Sturm-Liouville eigenvalues problems. SIAM J. Sci. Comput. 2015, 37, A515–A535. [Google Scholar] [CrossRef]
  23. Jin, B.; Lazarov, R.; Lu, X.; Zhou, Z. A simple finite element method for boundary value problems with a Riemann-Liouville derivative, Journal of Computational and Applied Mathematics. arXiv, 2015; arXiv:1502.07840v1. [Google Scholar]
  24. Greenberg, L. An oscillation method for fourth order self-adjoint two-point boundary value problems with nonlinear eigenvalues. SIAM J. Math. Anal. 1991, 22, 1021–1042. [Google Scholar] [CrossRef]
  25. Greenberg, L.; Marletta, M. Algorithm 775: The code SLEUTH for solving fourth order Sturm-Liouville problems. ACM Trans. Math. Softw. 1997, 23, 453–493. [Google Scholar] [CrossRef]
  26. Syam, M.; Siyyam, H. An Efficient Technique for Finding the Eigenvalues of Sixth-Order Sturm-Liouville problems. Appl. Math. Sci. 2011, 5, 2425–2436. [Google Scholar]
  27. Caputo, M. Linear models of dissipation whose Q is almost frequency independent, Part II. Geophys. J. Int. 1967, 13, 529–539. [Google Scholar] [CrossRef]
  28. Li, Y.; Sun, N. Numerical solution of fractional differential equations using the generalized block pulse operational matrix. Comput. Math. Appl. 2011, 62, 1046–1054. [Google Scholar] [CrossRef]
  29. Pandey, R.; Bhaedwaj, A.; Syam, M.I. An efficient method for solving fractional differential equations using Bernstein polynomials. J. Fract. Calc. Appl. 2014, 5, 129–145. [Google Scholar]
Table 1. Eigenvalues for different values of γ .
Table 1. Eigenvalues for different values of γ .
γ = 0.75 γ = 0.95 γ = 0.99
8.78259056059578.27118264490239.6635258705797
14.084450353939558.99016315983638.044080578817
96.67365275907884.971438095925
148.295350243613150.13372170205
199.571402506686233.59863572826
277.107135647923335.09777723091
295.450149615306454.76440655382
590.93089519416
Table 2. Eigenvalues for different values of γ .
Table 2. Eigenvalues for different values of γ .
γ = 0.501 γ = 0.75 γ = 0.95
3.74496847027704 4.90596508821842 5.82711926402061
5.59359607314814 9.95423834570763 21.8630977993855
25.47511927569108 14.2468657217155100.868795211963
151.845849936007525.8797084072818234.225682145921
124.475138197374 439.200912754629
721.009344587213
984.124781340994

Share and Cite

MDPI and ACS Style

Khashshan, M.M.; Syam, M.I.; Al Mokhmari, A. A Reliable Method for Solving Fractional Sturm–Liouville Problems. Mathematics 2018, 6, 176. https://doi.org/10.3390/math6100176

AMA Style

Khashshan MM, Syam MI, Al Mokhmari A. A Reliable Method for Solving Fractional Sturm–Liouville Problems. Mathematics. 2018; 6(10):176. https://doi.org/10.3390/math6100176

Chicago/Turabian Style

Khashshan, M. M., Muhammed I. Syam, and Ahlam Al Mokhmari. 2018. "A Reliable Method for Solving Fractional Sturm–Liouville Problems" Mathematics 6, no. 10: 176. https://doi.org/10.3390/math6100176

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop