Using Latent Semantic Analysis to Identify Research Trends in OpenStreetMap
Abstract
:1. Introduction
- RQ1:
- Who is leading OSM research?
- RQ2:
- Which research areas have been widely investigated by researchers?
- RQ3:
- How has the focus of topics within each core research area changed over time?
- RQ4:
- What are the potential future directions of OSM research?
2. Materials and Methods
2.1. Data Acquisition
2.2. Application of Latent Semantic Analysis
2.3. Pre-Processing and Term-Filtering
- Sentences (titles and abstracts) for each publication (document) were tokenized.
- Tokens in each document were converted to lowercase letters.
- Punctuation including periods, exclamation points, commas, apostrophes, question marks, quotation marks and hyphens were eliminated.
- The numbers were filtered to contain only textual terms.
- N-character filtering was performed to filter all those terms that consist of words with less than three characters.
- English stop-words (stop-words of nltk python package) and the common keywords in all of the publications (“OpenStreetMap”, “Volunteered”, “Geographic”, “Information”, “Crowdsource”, “Maps”, “OSM”, etc.) were removed. The dataset was then further refined to remove terms that exist only once in a document. These terms were local to a particular document and were considered insignificant [33].
- The SnowballC stemmer algorithm was applied to convert inflected words to the base stem of the tokens in each document.
2.4. Term Frequency-Inverse Document Frequency
2.5. Singular Vector Decomposition
2.6. Dimensional Reduction: Selecting Optimal Topic Solutions
2.7. Selecting Threshold Values for Topic Solutions
2.8. Topic Labeling
3. Results
3.1. Summary of Topic Solutions
3.2. Core OSM Research Areas
3.3. OSM Research Trends
3.4. Mapping of Core Research Areas and Research Trends
3.4.1. Quality Assessment and Analysis (T5.1)
3.4.2. Assessment of Contributors’ Behavior (T5.2)
3.4.3. Applications to Navigation and Disaster (T5.3)
3.4.4. Traffic Simulation and Mobility (T5.4)
3.4.5. Indoor Navigation Models (T5.5)
4. Discussion and Potential Future Directions
4.1. RQ1: Who Is Leading OSM Research?
4.2. RQ2: Which Research Areas Have Been Widely Investigated by Researchers?
4.3. RQ3: How Has the Focus of Topics within Each Core Research Area Changed over Time?
4.4. RQ4: What Are the Potential Future Directions?
4.4.1. General Recommendations
- Development of a ‘gamification’ framework for motivating contributors to collect data while taking care of the reference scale and resolution.
- Development of a specification model to ensure consistency and quality of the contributed data.
- Identification of heuristic intrinsic quality indicators for the assessment of OSM data and the development of a framework for data assessment applicable to different domains.
4.4.2. Research Directions
Assessment of contributors’ behavior:
- What are the motivational factors and patterns of user contributions?
- Which attributes should be considered for creating a user reputation system?
Quality assessment and analysis:
Traffic simulation and mobility:
- Capturing sensor data and optimization of various parameters (traffic lights, routes, etc.) for better results and generalization of the study [61].
- Apply mathematical measurements that facilitate the analysis of quantitative relationships within the network.
- Uncover gaps and prevalent pain-areas from the configuration of roads and their spatial connectivity properties.
Application of data mining, machine learning and big data to OSM research:
- Handling data imputation or incorrect names, inconsistent tag detection and data correction [69].
- Semantic analysis of attributes for user classification and reputation assessment [50] .
- Design and development of anomaly/carto-vandalism detection engines [246].
- Development of a framework to analyze past contribution trends and future OSM contribution patterns [239].
- Prediction of labels of features from types of features [215].
- Evaluation of indirect and intrinsic indicators to identify fitness of a dataset for a particular domain [219].
- Identification of a prohibition sign based on the knowledge gained from data presented in OSM [228].
- Traffic simulation to reduce greenhouse gas emissions and travel times [59].
- Clustering of similar users for prediction, and finding associations and dependencies to characterize OSM data.
- Assessment and analysis of OSM as big data.
- Nonlinear temporal analysis of spatial and attribute information to retrieve knowledge about contributors’ patterns.
- Supporting the input format of shapefiles to support spatial datasets other than OSM.
- Adding kNN join and distance-based join support.
- Developing a web-based interface to make it easier to explore datasets and use the system for non-technical users.
5. Limitations of the Study
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
GIS | Geographic Information System |
LSA | Latent Semantic Analysis |
OSM | OpenStreetMap |
SVD | Singular Vector Decomposition |
TF-IDF | Term Frequency-Inverse Document Frequency |
VGI | Volunteered Geographic Information |
References
- Hudson-Smith, A.; Crooks, A.; Gibin, M.; Milton, R.; Batty, M. NeoGeography and Web 2.0: Concepts, tools and applications. J. Locat. Based Serv. 2009, 3, 118–145. [Google Scholar] [CrossRef]
- Haklay, M.; Weber, P. OpenStreetMap: User-Generated Street Maps. IEEE Pervasive Comput. 2008, 7, 12–18. [Google Scholar] [CrossRef]
- Goodchild, M. NeoGeography and the nature of geographic expertise. J. Locat. Based Serv. 2009, 3, 82–96. [Google Scholar] [CrossRef]
- Howe, J. The rise of crowdsourcing. Wired Mag. 2006, 14, 1–4. [Google Scholar]
- Goodchild, M.F. Citizens as sensors: The world of volunteered geography. GeoJournal 2007, 69, 211. [Google Scholar] [CrossRef]
- Fischer, F. Collaborative mapping—How wikinomics is manifest in the geo-information economy. Geoinformtics 2008, 11, 28–31. [Google Scholar]
- Kounadi, O. Assessing the Quality of OpenStreetMap Data. Master’s Dissertation, Department of Civil, Environmental and Geomatic Engineering, University College of London, London, UK, 2009. [Google Scholar]
- Sehra, S.S.; Rai, H.S.; Singh, J. Quality Assessment of Crowdsourced Data against Custom Recorded Map Data. Indian J. Sci. Technol. 2015, 8, 1–6. [Google Scholar] [CrossRef]
- White, A.; Schmidt, K. Systematic literature reviews. Complement. Ther. Med. 2005, 13, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Delen, D.; Crossland, M.D. Seeding the survey and analysis of research literature with text mining. Expert Syst. Appl. 2008, 34, 1707–1720. [Google Scholar] [CrossRef]
- Lee, S.; Baker, J.; Song, J.; Wetherbe, J.C. An Empirical Comparison of Four Text Mining Methods. In Proceedings of the 2010 43rd Hawaii International Conference on System Sciences, Honolulu, HI, USA, 5–8 January 2010; pp. 1–10. [Google Scholar]
- Evangelopoulos, N.; Zhang, X.; Prybutok, R.V. Latent Semantic Analysis: Five methodological recommendations. Eur. J. Inf. Syst. 2012, 21, 70–86. [Google Scholar] [CrossRef]
- Yalcinkaya, M.; Singh, V. Patterns and trends in Building Information Modeling (BIM) research: A Latent Semantic Analysis. Autom. Constr. 2015, 59, 68–80. [Google Scholar] [CrossRef]
- Senaratne, H.; Mobasheri, A.; Ali, A.L.; Capineri, C.; Haklay, M.M. A review of volunteered geographic information quality assessment methods. Int. J. Geogr. Inf. Sci. 2017, 31, 139–167. [Google Scholar] [CrossRef]
- See, L.; Mooney, P.; Foody, G.; Bastin, L.; Comber, A.; Estima, J.; Fritz, S.; Kerle, N.; Jiang, B.; Laakso, M.; et al. Crowdsourcing, Citizen Science or Volunteered Geographic Information? The Current State of Crowdsourced Geographic Information. ISPRS Int. J. Geo-Inf. 2016, 5, 55. [Google Scholar] [CrossRef]
- Kitchenham, B.; Brereton, O.P.; Budgen, D.; Turner, M.; Bailey, J.; Linkman, S. Systematic literature reviews in software engineering—A systematic literature review. Inf. Softw. Technol. 2009, 51, 7–15. [Google Scholar] [CrossRef]
- JabRef Development Team. JabRef. 2016. Available online: http://www.jabref.org (accessed on 15 May 2016).
- Sehra, S.S. Custom .csv Exporter for JabRef. Available online: https://bitbucket.org/sukhjitsehra/topic-modelling (accessed on 29 June 2016).
- Deerwester, S.; Dumais, S.T.; Furnas, G.W.; Landauer, T.K.; Harshman, R. Indexing by latent semantic analysis. J. Am. Soc. Inf. Sci. 1990, 41, 391–407. [Google Scholar] [CrossRef]
- Sidorova, A.; Evangelopoulos, N.; Valacich, J.S.; Ramakrishnan, T. Uncovering the Intellectual Core of the Information Systems Discipline. MIS Quat. 2008, 32, 467–482. [Google Scholar]
- Hossain, M.M.; Prybutok, V.; Evangelopoulos, N. Causal Latent Semantic Analysis (cLSA): An Illustration. Int. Bus. Res. 2011, 4, 38. [Google Scholar] [CrossRef]
- Foltz, P.W. Latent semantic analysis for text-based research. Behav. Res. Methods Instrum. Comput. 1996, 28, 197–202. [Google Scholar] [CrossRef]
- Landauer, T.K.; Dumais, S.T. A solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychol. Rev. 1997, 104, 211. [Google Scholar] [CrossRef]
- Landauer, T.K.; Foltz, P.W.; Laham, D. An introduction to latent semantic analysis. Discourse Process. 1998, 25, 259–284. [Google Scholar] [CrossRef]
- Landauer, T.K. Latent Semantic Analysis. In Encyclopedia of Cognitive Science; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006. [Google Scholar]
- Dumais, S.T. Latent semantic analysis. Annu. Rev. Inf. Sci. Technol. 2004, 38, 188–230. [Google Scholar] [CrossRef]
- Larsen, K.R.; Monarchi, D.E. A Mathematical Approach to Categorization and Labeling of Qualitative Data: The Latent Categorization Method. Sociol. Methodol. 2004, 34, 349–392. [Google Scholar] [CrossRef]
- Evangelopoulos, N.E. Latent semantic analysis. Wiley Interdiscip. Rev. Cogn. Sci. 2013, 4, 683–692. [Google Scholar] [CrossRef] [PubMed]
- Řehruřek, R. Fast and Faster: A Comparison of Two Streamed Matrix Decomposition Algorithms. arXiv, 2011; arXiv:1102.5597. [Google Scholar]
- Halko, N.; Martinsson, P.G.; Tropp, J.A. Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev. 2009, 53, 217–288. [Google Scholar] [CrossRef]
- Feldman, R.; Sanger, J. The Text Mining Handbook: Advanced Approaches in Analyzing Unstructured Data; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Manning, C.D.; Raghavan, P.; Schütze, H. Introduction to Information Retrieval; Cambridge University Press: Cambridge, UK, 2008; Volume 1. [Google Scholar]
- Řehůřek, R.; Sojka, P. Software Framework for Topic Modelling with Large Corpora. In Proceedings of the LREC 2010 Workshop New Challenges for NLP Frameworks, Valletta, Malta, 22 May 2010; pp. 46–50. [Google Scholar]
- Salton, G.; Buckley, C. Term-weighting approaches in automatic text retrieval. Inf. Process. Manag. 1988, 24, 513–523. [Google Scholar] [CrossRef]
- Paik, J.H. A Novel TF-IDF Weighting Scheme for Effective Ranking. In Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’13), Dublin, Ireland, 28 July–1 August 2013; pp. 343–352. [Google Scholar]
- Lan, M.; Tan, C.L.; Low, H.B.; Sung, S.Y. A comprehensive comparative study on term weighting schemes for text categorization with support vector machines. In Proceedings of the Special Interest Tracks and Posters of the 14th International Conference on World Wide Web, Chiba, Japan, 10–14 May 2005; pp. 1032–1033. [Google Scholar]
- Wu, H.C.; Luk, R.W.P.; Wong, K.F.; Kwok, K.L. Interpreting TF-IDF Term Weights As Making Relevance Decisions. ACM Trans. Inf. Syst. 2008, 26, 13:1–13:37. [Google Scholar] [CrossRef]
- Abidin, T.F.; Yusuf, B.; Umran, M. Singular Value Decomposition for dimensionality reduction in unsupervised text learning problems. In Proceedings of the 2010 2nd International Conference on Education Technology and Computer, Shanghai, China, 22–24 June 2010; Volume 4, pp. 422–426. [Google Scholar]
- Al-Qawasmeh, A.M.; Maciejewski, A.A.; Siegel, H.J. Characterizing heterogeneous computing environments using singular value decomposition. In Proceedings of the 26th IEEE International Parallel and Distributed Processing Symposium, Atlanta, GA, USA, 19–23 April 2010; pp. 1–9. [Google Scholar]
- Kuandykov, A.A.; Rakhmetulayeva, S.B.; Baiburin, Y.M.; Nugumanova, A.B. Usage of singular value decomposition matrix for search latent semantic structures in natural language texts. In Proceedings of the 2015 54th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), Hangzhou, China, 28–30 July 2015; pp. 286–291. [Google Scholar]
- Bradford, R.B. An empirical study of required dimensionality for large-scale latent semantic indexing applications. In Proceedings of the 17th ACM Conference on Information and Knowledge Management (CIKM ’08), Napa Valley, CA, USA, 26–30 October 2008. [Google Scholar]
- Kaiser, H.F. The varimax criterion for analytic rotation in factor analysis. Psychometrika 1958, 23, 187–200. [Google Scholar] [CrossRef]
- Abdi, H. Factor rotations in factor analyses. In The SAGE Encyclopedia of Social Science Research Methods; Lewis-Beck, M., Ed.; Sage: Thousand Oaks, CA, USA, 2004; pp. 792–795. [Google Scholar]
- Ciepluch, B.; Mooney, P.; Jacob, R.; Zheng, J.; Winstanley, A.C. Assessing the Quality of Open Spatial Data for Mobile Location-based Services Research and Applications. Arch. Photogramm. Cartogr. Remote Sens. 2011, 1, 105–116. [Google Scholar]
- Al-Bakri, M.; Fairbairn, D. Assessing similarity matching for possible integration of feature classifications of geospatial data from official and informal sources. Int. J. Geogr. Inf. Sci. 2012, 26, 1437–1456. [Google Scholar] [CrossRef]
- Sachdeva, A. Collective Enrichment of OpenStreetMap Spatial Data Through Vehicles Equipped with Driver Assistance Systems. Master’s Thesis, Faculty of Computer Science, Chemnitz University of Technology, Chemnitz, Germany, 2015. [Google Scholar]
- Brovelli, M.A.; Minghini, M.; Molinari, M.; Mooney, P. Towards an Automated Comparison of OpenStreetMap with Authoritative Road Datasets. Trans. GIS 2016, 21, 191–206. [Google Scholar] [CrossRef]
- Neis, P.; Zielstra, D.; Zipf, A. Comparison of Volunteered Geographic Information Data Contributions and Community Development for Selected World Regions. Future Internet 2013, 5, 282. [Google Scholar] [CrossRef]
- Bégin, D.; Devillers, R.; Roche, S. Assessing Volunteered Geographic Information VGI Quality Based On Contributors’ Mapping Behaviours. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, XL-2/W1, 149–154. [Google Scholar]
- Keßler, C.; de Groot, R.T.A. Trust as a Proxy Measure for the Quality of Volunteered Geographic Information in the Case of OpenStreetMap. In Geographic Information Science at the Heart of Europe; Vandenbroucke, D., Bucher, B., Crompvoets, J., Eds.; Springer International Publishing: Cham, Switzerland, 2013; pp. 21–37. [Google Scholar]
- Arsanjani, J.J.; Barron, C.; Bakillah, M.; Helbich, M. Assessing the Quality of OpenStreetMap Contributors together with their Contributions. In Proceedings of the 16th AGILE Conference on Geographic Information Science, Nashville, TN, USA, 5–9 August 2013. [Google Scholar]
- Yang, A.; Fan, H.; Jing, N. Amateur or Professional: Assessing the Expertise of Major Contributors in OpenStreetMap Based on Contributing Behaviors. ISPRS Int. J. Geo-Inf. 2016, 5, 21. [Google Scholar] [CrossRef]
- Neis, P.; Zipf, A. Analyzing the Contributor Activity of a Volunteered Geographic Information Project the Case of OpenStreetMap. ISPRS Int. J. Geo-Inf. 2012, 1, 146–165. [Google Scholar] [CrossRef]
- Jacob, R.; Mooney, P.; Corcoran, P.; Winstanley, A.C. Integrating Haptic Feedback to Pedestrian Navigation Applications. In Proceedings of the GISRUK 2011: GIS Research UK 19th Annual Conference, Portsmouth, UK, 16 April 2011; pp. 205–210. [Google Scholar]
- Jacob, R.; Winstanley, A.; Meenagh, D.; Aoidh, E.M. Wiimote as a Navigation tool for Pedestrians. In Proceedings of the China-Ireland Information and Communications Technologies Conference (CIICT 2009), Maynooth, Ireland, 30 September 2009; pp. 23–24. [Google Scholar]
- Jacob, R.; Mooney, P.; Corcoran, P.; Winstanley, A.C. Haptic-GIS: Exploring the Possibilities. SIGSPATIAL Spec. 2010, 2, 13–18. [Google Scholar] [CrossRef]
- Zook, M.; Graham, M.; Shelton, T.; Gorman, S. Volunteered geographic information and crowdsourcing disaster relief: A case study of the Haitian earthquake. World Med. Health Policy 2010, 2, 7–33. [Google Scholar] [CrossRef]
- Kaklanis, N.; Votis, K.; Tzovaras, D. Open Touch/Sound Maps: A system to convey street data through haptic and auditory feedback. Comput. Geosci. 2013, 57, 59–67. [Google Scholar] [CrossRef]
- Dallmeyer, J.; Lattner, A.D.; Timm, I.J. GIS-Based Traffic Simulation Using OSM. In Data Mining for Geoinformatics; Cervone, G., Lin, J., Waters, N., Eds.; Springer: New York, NY, USA, 2014; pp. 65–82. [Google Scholar]
- Stolfi, D.H.; Alba, E. Red Swarm: Smart mobility in cities with EAS. In Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, Amsterdam, The Netherlands, 6–10 July 2013; pp. 1373–1380. [Google Scholar]
- Stolfi, D.H.; Alba, E. Advances in Artificial Intelligence. In An Evolutionary Algorithm to Generate Real Urban Traffic Flows; Springer International Publishing: Cham, Switzerland, 2015; pp. 332–343. [Google Scholar]
- Su, Y.; Cai, H.; Shi, J. An improved realistic mobility model and mechanism for VANET based on SUMO and NS3 collaborative simulations. In Proceedings of the 2014 20th IEEE International Conference on Parallel and Distributed Systems (ICPADS), Hsinchu, Taiwan, 16–19 December 2014; pp. 900–905. [Google Scholar]
- Backfrieder, C.; Mecklenbräuker, C.F.; Ostermayer, G. TraffSim—A Traffic Simulator for Investigating Benefits Ensuing from Intelligent Traffic Management. In Proceedings of the 2013 European Modelling Symposium, Manchester, UK, 20–22 November 2013; pp. 451–456. [Google Scholar]
- Goetz, M.; Zipf, A. Indoor Route Planning with Volunteered Geographic Information on a (Mobile) Web-Based Platform. In Progress in Location-Based Services; Springer: Berlin/Heidelberg, Germany, 2013; pp. 211–231. [Google Scholar]
- Czogalla, O.; Naumann, S. Pedestrian Guidance for Public Transport Users in Indoor Stations Using Smartphones. In Proceedings of the 18th International IEEE Conference on Intelligent Transportation Systems, Las Palmas, Spain, 15–18 September 2015; pp. 2539–2544. [Google Scholar]
- Czogalla, O. Smart phone based indoor navigation for guidance in public transport facilities. In Proceedings of the 2nd IFAC Conference on Embedded Systems, Computer Intelligence and Telematics CESCIT 2015, Maribor, Slovenia, 22–24 June 2015; Volume 48, pp. 233–239. [Google Scholar]
- Goetz, M.; Zipf, A. Using Crowdsourced Geodata for Agent-Based Indoor Evacuation Simulations. ISPRS Int. J. Geo-Inf. 2012, 1, 186. [Google Scholar] [CrossRef]
- Nikander, J.; Järvi, J.; Usman, M.; Virrantaus, K. Progress in Location-Based Safety Services. In Indoor and Outdoor Mobile Navigation by Using a Combination of Floor Plans and Street Maps; Lecture Notes in Geoinformation and Cartography; Springer: Berlin/Heidelberg, Germany, 2013; pp. 233–249. [Google Scholar]
- Zhang, X.; Ai, T. How to Model Roads in OpenStreetMap A Method for Evaluating the Fitness-for-Use of the Network for Navigation. In Advances in Spatial Data Handling and Analysis; Harvey, F., Leung, Y., Eds.; Advances in Geographic Information Science; Springer International Publishing: Basel, Switzerland, 2015; pp. 143–162. [Google Scholar]
- Mooney, P.; Corcoran, P.; Winstanley, A.C. Towards quality metrics for OpenStreetMap. In Proceedings of the 18th ACM SIGSPATIAL International Symposium on Advances in Geographic Information Systems (ACM-GIS 2010), San Jose, CA, USA, 3–5 November 2010; pp. 514–517. [Google Scholar]
- ISO. ISO 19157:2013: Geographic Information—Data Quality; Technical Report; International Organization for Standardization (ISO): Geneva, Switzerland, 2013; Technical Report. [Google Scholar]
- Longley, P.A.; Goodchild, M.F.; Maguire, D.J.; Rhind, D.W. (Eds.) Geographical Information Systems: Principles, Techniques, Management and Applications, 2nd ed.; Abridged; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
- Guptill, S.C. {Chapter} {Eight}— Temporal information. In Elements of Spatial Data Quality; Guptill, S.C., Morrison, J.L., Eds.; International Cartographic Association, Pergamon: Amsterdam, The Netherlands, 1995; pp. 153–165. [Google Scholar]
- Joksić, D.; Bajat, B. Elements of spatial data quality as information technology support for sustainable development planning. Spatium 2004, 77–83. [Google Scholar] [CrossRef]
- Servigne, S.; Ubeda, T.; Puricelli, A.; Laurini, R. A methodology for spatial consistency improvement of geographic databases. GeoInformatica 2000, 4, 7–34. [Google Scholar] [CrossRef]
- Antoniou, V.; Skopeliti, A. Measures and Indicators of VGI quality: An overview. ISPRS Int. Soc. Photogramm. Remote Sens. 2015, II-3/W5, 345–351. [Google Scholar] [CrossRef]
- Ather, A. A Quality Analysis of OpenStreetMap. Master’s Thesis, Department of Civil, Environmental & Geomatic Engineering, University College London, London, UK, 2009. [Google Scholar]
- Haklay, M. How good is volunteered geographical information A comparative study of OpenStreetMap and Ordnance Survey datasets. Environ. Plan. B Plan. Des. 2010, 37, 682–703. [Google Scholar] [CrossRef]
- Girres, J.F.; Touya, G. Quality Assessment of the French OpenStreetMap Dataset. Trans. GIS 2010, 14, 435–459. [Google Scholar] [CrossRef]
- Helbich, M.; Amelunxen, C.; Neis, P.; Zipf, E. Comparative Spatial Analysis of Positional Accuracy of OpenStreetMap and Proprietary Geodata. In Proceedings of the Geoinformatics Forum Salzburg (GI_Forum ’12), Salzburg, Austria, 3–6 July 2012; pp. 221–230. [Google Scholar]
- Ludwig, I.; Voss, A.; Krause-Traudes, M.A. A Comparison of the Street Networks of Navteq and OSM in Germany. In Advancing Geoinformation Science for a Changing World; Lecture Notes in Geoinformation and Cartography; Springer: Berlin/Heidelberg, Germany, 2011; Volume 1, pp. 65–84. [Google Scholar]
- Mondzech, J.; Sester, M. Quality Analysis of OpenStreetMap Data Based on Application Needs. Cartogr. Int. J. Geogr. Inf. Geovis. 2011, 46, 115–125. [Google Scholar] [CrossRef]
- Hayakawa, T.; Imi, Y.; Ito, T. Analysis of Quality of Data in OpenStreetMap. In Proceedings of the 2012 IEEE 14th International Conference on Commerce and Enterprise Computing, Hangzhou, China, 9–11 September 2012; pp. 131–134. [Google Scholar]
- Bhattacharya, P. Quality Assessment and Object Matching of OpenStreetMap in Combination with the Dutch Topographic Map TOP10NL. Master’s Thesis, Department of GIS Technology, OTB Research Institute for the Built Environment, Delft University of Technology, Delft, The Netherlands, 2012. [Google Scholar]
- Koukoletsos, T.; Haklay, M.; Ellul, C. Assessing Data Completeness of VGI through an Automated Matching Procedure for Linear Data. Trans. GIS 2012, 16, 477–498. [Google Scholar] [CrossRef]
- Mooney, P.; Corcoran, P. Using OSM for LBS—An Analysis of Changes to Attributes of Spatial Objects. In Advances in Location-Based Services; Lecture Notes in Geoinformation and Cartography; Springer: Berlin/Heidelberg, Germany, 2012; pp. 165–179. [Google Scholar]
- Siebritz, L.; Sithole, G.; Zlatanova, S. Assessment of the homogeneity of volunteered geographic information in South Africa. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, XXXIX-B4, 553–558. [Google Scholar] [CrossRef]
- Tenney, M. Quality Evaluations on Canadian OpenStreetMap Data. In Proceedings of the Conference: Spatial Knowledge and Information, Banff, AB, Canada, 7 February 2014. [Google Scholar]
- Wang, M.; Li, Q.; Hu, Q.; Zhou, M. Quality analysis of OpenStreetMap data. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, XL-2/W1, 155–158. [Google Scholar] [CrossRef]
- Zielstra, D.; Hochmair, H.H.; Neis, P. Assessing the Effect of Data Imports on the Completeness of OpenStreetMap A United States Case Study. Trans. GIS 2013, 17, 315–334. [Google Scholar] [CrossRef]
- Hecht, R.; Kunze, C.; Hahmann, S. Measuring Completeness of Building Footprints in OpenStreetMap over Space and Time. ISPRS Int. J. Geo-Inf. 2013, 2, 1066–1091. [Google Scholar] [CrossRef]
- Canavosio-Zuzelski, R.; Agouris, P.; Doucette, P. A Photogrammetric Approach for Assessing Positional Accuracy of OpenStreetMap Roads. ISPRS Int. J. Geo-Inf. 2013, 2, 276–301. [Google Scholar] [CrossRef]
- Fairbairn, D.; Al-Bakri, M. Using Geometric Properties to Evaluate Possible Integration of Authoritative and Volunteered Geographic Information. ISPRS Int. J. Geo-Inf. 2013, 2, 349–370. [Google Scholar] [CrossRef]
- Jackson, M.; Feldman, S.; Morley, J.; Pourabdollah, A. Towards an Authoritative OpenStreetMap: Conflating OSM and OS OpenData National Maps Road Network. ISPRS Int. J. Geo-Inf. 2013, 2, 704–728. [Google Scholar]
- Jilani, M.; Corcoran, P.; Bertolotto, M. Multi-granular Street Network Representation towards Quality Assessment of OpenStreetMap Data. In Proceedings of the CTS 2013, 6th ACM SIGSPATIAL International Workshop on Computational Transportation Science, Orlando, FL, USA, 5 November 2013; p. 19. [Google Scholar]
- Karam, R.; Melchiori, M. A Human-Enhanced Framework for Assessing Open Geo-spatial Data. In Advances in Conceptual Modeling; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2014; Volume 8697, pp. 97–106. [Google Scholar]
- Zheng, S.; Zheng, J. Assessing the Completeness and Positional Accuracy of OpenStreetMap in China. In Thematic Cartography for the Society; Bandrova, T., Konecny, M., Zlatanova, S., Eds.; Lecture Notes in Geoinformation and Cartography; Springer International Publishing: Cham, Switzerland, 2014; pp. 171–189. [Google Scholar]
- Camboim, S.P.; Bravo, J.V.M.; Sluter, C.R. An Investigation into the Completeness of, and the Updates to, OpenStreetMap Data in a Heterogeneous Area in Brazil. ISPRS Int. J. Geo-Inf. 2015, 4, 1366–1388. [Google Scholar] [CrossRef]
- Zhao, P.; Jia, T.; Qin, K.; Shan, J.; Jiao, C. Statistical analysis on the evolution of OpenStreetMap road networks in Beijing. Phys. A Stat. Mech. Its Appl. 2015, 420, 59–72. [Google Scholar] [CrossRef]
- Rehrl, K.; Brunauer, R.; Gröchenig, S. Towards a Qualitative Assessment of Changes in Geographic Vector Datasets. In AGILE 2015; Lecture Notes in Geoinformation and Cartography; Springer International Publishing: Cham, Switzerland, 2015; pp. 181–197. [Google Scholar]
- Fan, H.; Yang, B.; Zipf, A.; Rousell, A. A polygon-based approach for matching OpenStreetMap road networks with regional transit authority data. Int. J. Geogr. Inf. Sci. 2016, 30, 748–764. [Google Scholar] [CrossRef]
- Ciepłuch, B.; Mooney, P.; Jacob, R.; Winstanley, A. Sketches of Generic Framework for Quality Assessment of Volunteered Geographical Data. Available online: http://eprints.maynoothuniversity.ie/2484/2/Ciepluch.html (accessed on 20 June 2011).
- Barron, C.; Neis, P.; Zipf, A. A Comprehensive Framework for Intrinsic OpenStreetMap Quality Analysis. Trans. GIS 2014, 18, 877–895. [Google Scholar] [CrossRef]
- Ballatore, A.; Zipf, A. A Conceptual Quality Framework for Volunteered Geographic Information. In Spatial Information Theory; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2015; Volume 9368, pp. 89–107. [Google Scholar]
- Rehrl, K.; Gröchenig, S. A Framework for Data-Centric Analysis of Mapping Activity in the Context of Volunteered Geographic Information. ISPRS Int. J. Geo-Inf. 2016, 5, 37. [Google Scholar] [CrossRef]
- Espinoza-Molina, D.; Nikolaou, C.; Dumitru, C.O.; Bereta, K.; Koubarakis, M.; Schwarz, G.; Datcu, M. Very-High-Resolution SAR Images and Linked Open Data Analytics Based on Ontologies. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1696–1708. [Google Scholar] [CrossRef]
- Estima, J.; Painho, M. Investigating the Potential of OpenStreetMap for Land Use/Land Cover Production: A Case Study for Continental Portugal. In OpenStreetMap in GIScience—Experiences, Research, and Applications; Jokar Arsanjani, J., Zipf, A., Mooney, P., Helbich, M., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 273–293. [Google Scholar]
- Johnson, B.A.; Iizuka, K. Integrating OpenStreetMap crowdsourced data and Landsat time-series imagery for rapid land use/land cover (LULC) mapping: Case study of the Laguna de Bay area of the Philippines. Appl. Geogr. 2016, 67, 140–149. [Google Scholar] [CrossRef]
- Arsanjani, J.J.; Helbich, M.; Bakillah, M.; Hagenauer, J.; Zipf, A. Toward mapping land-use patterns from volunteered geographic information. Int. J. Geogr. Inf. Sci. 2013, 27, 2264–2278. [Google Scholar] [CrossRef]
- Estima, J.; Painho, M. Exploratory analysis of OpenStreetMap for land use classification. In Proceedings of the 2nd ACM SIGSPATIAL International Workshop on Crowdsourced and Volunteered Geographic Information, (GEOCROWD2013), Orlando, FL, USA, 5 November 2013; pp. 39–46. [Google Scholar]
- Ribeiro, A.; Fonte, C. A methodology for assessing openstreetmap degree of coverage for purposes of land cover mapping. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, II-3-W5, 297–303. [Google Scholar] [CrossRef]
- Arsanjani, J.J.; Helbich, M.; Bakillah, M. Exploiting volunteered geographic information to ease land use mapping of an urban landscape. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, XL-4/W1, 51–55. [Google Scholar] [CrossRef]
- Vaz, E.; Jokar Arsanjani, J. Crowdsourced mapping of land use in urban dense environments: An assessment of Toronto. Can. Geogr./Le Géographe Canadien 2015, 59, 246–255. [Google Scholar] [CrossRef]
- Arsanjani, J.J.; Vaz, E. An assessment of a collaborative mapping approach for exploring land use patterns for several European metropolises. Int. J. Appl. Earth Obs. Geoinf. 2015, 35 Pt B, 329–337. [Google Scholar] [CrossRef]
- Link, J.B.; Smith, P.; Viol, N.; Wehrle, K. FootPath: Accurate map-based indoor navigation using smartphones. In Proceedings of the 2011 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Guimarães, Portugal, 21–23 September 2011; pp. 1–8. [Google Scholar]
- Carlino, D.; Depinet, M.; Khandelwal, P.; Stone, P. Approximately Orchestrated Routing and Transportation Analyzer: Large-scale traffic simulation for autonomous vehicles. In Proceedings of the 2012 15th International IEEE Conference on Intelligent Transportation Systems, Anchorage, AK, USA, 16–19 September 2012; pp. 334–339. [Google Scholar]
- Bewermeyer, C.; Berndt, R.; Schellenberg, S.; German, R.; Eckhoff, D. Poster: cOSMetic—Towards reliable OSM to sumo network conversion. In Proceedings of the 2015 IEEE Vehicular Networking Conference (VNC), Kyoto, Japan, 16–18 December 2015; pp. 151–152. [Google Scholar]
- Chen, Y. Adding a Comprehensive Calibration Methodology to an Agent-Based Transportation Simulation. Ph.D. Thesis, Technical University of Berlin, Berlin, Germany, 2012. [Google Scholar]
- Stolfi, D.H.; Alba, E. Eco-friendly reduction of travel times in european smart cities. In Proceedings of the 2014 Conference on Genetic and Evolutionary Computation, Vancouver, BC, Canada, 12–16 July 2014; pp. 1207–1214. [Google Scholar]
- Stolfi, D.H.; Alba, E. Reducing Gas Emissions in Smart Cities by Using the Red Swarm Architecture. In Advances in Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2013; Volume 8109, pp. 289–299. [Google Scholar]
- Stolfi, D.H.; Alba, E. Smart Mobility Policies with Evolutionary Algorithms: The Adapting Info Panel Case. In Proceedings of the 2015 on Genetic and Evolutionary Computation Conference, Madrid, Spain, 11–15 July 2015; pp. 1287–1294. [Google Scholar]
- Ghiani, G.; Guerriero, E. A lower bound for the quickest path problem. Comput. Oper. Res. 2014, 50, 154–160. [Google Scholar] [CrossRef]
- Nowak, C.; Hahne, F.; Ambrosi, K. Contraction Hierarchies with A* for digital road maps. In Operations Research Proceedings 2011; Klatte, D., Lüthi, H.J., Schmedders, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 311–316. [Google Scholar]
- Aridhi, S.; Benjamin, V.; Lacomme, P.; Ren, L. Shortest Path Resolution using Hadoop. In Proceedings of the MOSIM 2014, 10ème Conférence Francophone de Modélisation, Optimisation et Simulation, Nancy, France, 5–7 November 2014; HAL CCSD: Nancy, France, 2014. [Google Scholar]
- Aridhi, S.; Lacomme, P.; Ren, L.; Vincent, B. A MapReduce-based approach for shortest path problem in large-scale networks. Eng. Appl. Artif. Intell. 2015, 41, 151–165. [Google Scholar] [CrossRef]
- Graser, A.; Straub, M.; Dragaschnig, M. Progress in Location-Based Services 2014. In Is OSM Good Enough for Vehicle Routing A Study Comparing Street Networks in Vienna; Lecture Notes in Geoinformation and Cartography; Springer International Publishing: Cham, Switzerland, 2015; pp. 3–17. [Google Scholar]
- Jiang, B.; Liu, X. Computing the fewest-turn map directions based on the connectivity of natural roads. Int. J. Geogr. Inf. Sci. 2011, 25, 1069–1082. [Google Scholar] [CrossRef]
- Eckle, M.; de Albuquerque, J.P. Quality Assessment of Remote Mapping in OpenStreetMap for Disaster Management Purposes. In Proceedings of the ISCRAM 2015 Conference—Kristiansand, Kristiansand, Norway, 24–27 May 2015; pp. 1–5. [Google Scholar]
- Rahman, K.M.; Alam, T.; Chowdhury, M. Location based early disaster warning and evacuation system on mobile phones using OpenStreetMap. In Proceedings of the 2012 IEEE Conference on Open Systems (ICOS), Kuala Lumpur, Malaysia, 21–24 October 2012; pp. 1–6. [Google Scholar]
- Jacob, R.; Mooney, P.; Winstanley, A. What’s up that Street Exploring Streets Using a Haptic GeoWand. In Advances in Location-Based Services; Gartner, G., Ortag, F., Eds.; Springer: Heidelberg/Berlin, Germany, 2012; pp. 91–105. [Google Scholar]
- Tabachnick, B.G.; Fidell, L.S. Using Multivariate Statistics. In Principal Compnents and Factor Analysis; Allyn & Bacon: Boston, MA, USA, 2006; pp. 612–680. [Google Scholar]
- Montanges, A.P. Classification of Urban Structural Types (UST) Using Multiple Data Sources and Spatial Priors. Master’s Thesis, Laboratory of Geographic Information Systems (LASIG), Lausanne, Switzerland, 2014. [Google Scholar]
- Schlesinger, J. Using Crowd-Sourced Data to Quantify the Complex Urban Fabric OpenStreetMap and the Urban Rural Index. In OpenStreetMap in GIScience; Lecture Notes in Geoinformation and Cartography; Springer International Publishing: Cham, Switzerland, 2015; pp. 295–315. [Google Scholar]
- Danylo, O.; See, L.; Bechtel, B.; Schepaschenko, D.; Fritz, S. Contributing to WUDAPT A Local Climate Zone Classification of Two Cities in Ukraine. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1841–1853. [Google Scholar] [CrossRef]
- Dorn, H.; Vetter, M.; Höfle, B. GIS-Based Roughness Derivation for Flood Simulations: A Comparison of Orthophotos, LiDAR and Crowdsourced Geodata. Remote Sens. 2014, 6, 1739–1759. [Google Scholar] [CrossRef]
- Will, J. Development of an Automated Matching Algorithm to Assess the Quality of the OpenStreetMap Road Network. Master’s Thesis, Department of Physical Geography and Ecosystem Science, Lund University, Sölvegatan, Sweden, 2014. [Google Scholar]
- Fan, H.; Zipf, A.; Fu, Q.; Neis, P. Quality assessment for building footprints data on OpenStreetMap. Int. J. Geogr. Inf. Sci. 2014, 28, 700–719. [Google Scholar] [CrossRef]
- Fan, H.; Zipf, A.; Fu, Q. Estimation of Building Types on OpenStreetMap Based on Urban Morphology Analysis. In Connecting a Digital Europe Through Location and Place; Lecture Notes in Geoinformation and Cartography; Springer International Publishing: Cham, Switzerland, 2014; pp. 19–35. [Google Scholar]
- Zhou, X.; Zeng, L.; Jiang, Y.; Zhou, K.; Zhao, Y. Dynamically Integrating OSM Data into a Borderland Database. ISPRS Int. J. Geo-Inf. 2015, 4, 1707–1728. [Google Scholar] [CrossRef]
- Codescu, M.; Horsinka, G.; Kutz, O.; Mossakowski, T.; Rau, R. OSMonto—An Ontology of OpenStreetMap Tags. In Proceedings of the State of the Map Europe (SOTM-EU), Vienna, Austria, 15–17 July 2011; pp. 55–64. [Google Scholar]
- Sengstock, C.; Gertz, M.; Canh, T.V. Spatial Interestingness Measures for Co-location Pattern Mining. In Proceedings of the 2012 IEEE 12th International Conference on Data Mining Workshops, Brussels, Belgium, 10 December 2012; pp. 821–826. [Google Scholar]
- Basiri, A.; Jackson, M.; Amirian, P.; Pourabdollah, A.; Sester, M.; Winstanley, A.; Moore, T.; Zhang, L. Quality assessment of OpenStreetMap data using trajectory mining. Geo-Spat. Inf. Sci. 2016, 19, 56–68. [Google Scholar] [CrossRef]
- Touya, G.; Reimer, A. Inferring the Scale of OpenStreetMap Features. In OpenStreetMap in GIScience; Arsanjani, J.J., Zipf, A., Mooney, P., Helbich, M., Eds.; Lecture Notes in Geoinformation and Cartography; Springer: Berlin/Heidelberg, Germany, 2015; pp. 81–99. [Google Scholar]
- Scheffler, T.; Schirru, R.; Lehmann, P. Matching Points of Interest from Different Social Networking Sites. In KI 2012: Advances in Artificial Intelligence; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7526, pp. 245–248. [Google Scholar]
- Zhou, X.G.; Jiang, Y.; Zhou, K.X.; Zeng, L. A Dynamic Integration Method for Borderland Database using OSM data. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, XL-4/W3, 141–147. [Google Scholar] [CrossRef]
- Jiang, Y.; Gao, F.; Xu, G. Computer vision-based multiple-lane detection on straight road and in a curve. In Proceedings of the 2010 International Conference on Image Analysis and Signal Processing, Hangzhou, China, 9–11 April 2010; pp. 114–117. [Google Scholar]
- Lemke, D.; Mattauch, V.; Heidinger, O.; Hense, H.W. Who Hits the Mark A Comparative Study of the Free Geocoding Services of Google and OpenStreetMap. Gesundheitswesen 2015, 77, e160–e165. [Google Scholar] [PubMed]
- Peterson, M.P. Evaluating Mapping APIs. In Modern Trends in Cartography; Lecture Notes in Geoinformation and Cartography; Springer International Publishing: Cham, Switzerland, 2015; pp. 183–197. [Google Scholar]
- Karagiannakis, N.; Giannopoulos, G.; Skoutas, D.; Athanasiou, S. OSMRec Tool for Automatic Recommendation of Categories on Spatial Entities in OpenStreetMap. In Proceedings of the 9th ACM Conference on Recommender Systems, (RecSys 2015), Vienna, Austria, 16–20 September 2015; ACM: Vienna, Austria, 2015; pp. 337–338. [Google Scholar]
- Efentakis, A.; Brakatsoulas, S.; Grivas, N.; Pfoser, D. Crowdsourcing turning restrictions for OpenStreetMap. In Proceedings of the Workshops of the EDBT/ICDT 2014 Joint Conference (EDBT/ICDT 2014), Athens, Greece, 28 March 2014; pp. 355–362. [Google Scholar]
- Ying, F.; Mooney, P.; Corcoran, P.; Winstanley, A. Polygon Processing on OpenStreetMap XML Data. In Proceedings of the GISRUK 2010: GIS Research UK 18th Annual Conference, London, UK, 14–16 April 2010. [Google Scholar]
- Over, M.; Schilling, A.; Neubauer, S.; Zipf, A. Generating web-based 3D City Models from OpenStreetMap: The current situation in Germany. Comput. Environ. Urban Syst. 2010, 34, 496–507. [Google Scholar] [CrossRef]
- Goetz, M.; Zipf, A. The Evolution of Geo-Crowdsourcing: Bringing Volunteered Geographic Information to the Third Dimension. In Crowdsourcing Geographic Knowledge; Sui, D., Elwood, S., Goodchild, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 139–159. [Google Scholar]
- Goetz, M. Towards generating highly detailed 3D CityGML models from OpenStreetMap. Int. J. Geogr. Inf. Sci. 2013, 27, 845–865. [Google Scholar] [CrossRef]
- Uden, M.; Zipf, A. Open Building Models: Towards a Platform for Crowdsourcing Virtual 3D Cities. In Progress and New Trends in 3D Geoinformation Sciences; Lecture Notes in Geoinformation and Cartography; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- De la Vega, P.G.; Ariza-López, F.J.; Mozas-Calvache, A.T. Models for positional accuracy assessment of linear features: 2D and 3D cases. Surv. Rev. 2016, 48, 347–360. [Google Scholar] [CrossRef]
- Mehdi, K.; Lounis, M.; Bounceur, A.; Kechadi, T. CupCarbon: A Multi-Agent and Discrete Event Wireless Sensor Network Design and Simulation Tool. In Proceedings of the SIMUtools 2014: 7th International ICST Conference on Simulation Tools and Techniques, Lisbon, Portugal, 17–19 March 2014; The Institute for Computer Science, Social Informatics, and Telecommunications Engineering: Lisbon, Portugal, 2014. [Google Scholar]
- Zheng, J.; Ciepluch, B.; Mooney, P.; Winstanley, A.C. Location Based Services of University Town Based on OpenStreetMap: NUI Maynooth as an example. In CIICT 2009: Proceedings of the China-Ireland Information and Communications Technologies Conference; Winstanley, A., Ed.; National University of Ireland Maynooth: Maynooth, Ireland, 2009; pp. 19–22. [Google Scholar]
- Molina, M.; Sanchez-Soriano, J.; Corcho, O. Using Open Geographic Data to Generate Natural Language Descriptions for Hydrological Sensor Networks. Sensors 2015, 15, 16009–16026. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, B.; Ertl, T. Interactively Displaying Maps on a Tactile Graphics Display. In Proceedings of the Workshop on Spatial Knowledge Acquisition with Limited Information Displays 2012, Kloster Seeon, Germany, 31 August 2012. [Google Scholar]
- Mooney, P.; Corcoran, P.; Ciepluch, B. The potential for using volunteered geographic information in pervasive health computing applications. J. Ambient Intell. Humaniz. Comput. 2013, 4, 731–745. [Google Scholar] [CrossRef]
- Hentschel, M.; Wagner, B. Autonomous robot navigation based on OpenStreetMap geodata. In Proceedings of the 13th International IEEE Conference on Intelligent Transportation Systems, Funchal, Portugal, 19–22 September 2010; pp. 1645–1650. [Google Scholar]
- Shalaik, B.; Winstanley, A. Delivering Real-Time Bus Tracking Information on Mobile Devices. In Future Information Technology; Communications in Computer and Information Science; Springer: Berlin/Heidelberg, Germany, 2011; Volume 185, pp. 139–147. [Google Scholar]
- Bozza, A.; Durand, A.; Confortola, G.; Soncini, A.; Allenbach, B.; Bocchiola, D. Potential of remote sensing and open street data for flood mapping in poorly gauged areas: A case study in Gonaives, Haiti. Appl. Geomat. 2016, 8, 117–131. [Google Scholar] [CrossRef]
- Mokbel, M.F.; Alarabi, L.; Bao, J.; Eldawy, A.; Magdy, A.; Sarwat, M.; Waytas, E.; Yackel, S. A demonstration of MNTG—A web-based road network traffic generator. In Proceedings of the 2014 IEEE 30th International Conference on Data Engineering, Chicago, IL, USA, 19 May 2014; pp. 1246–1249. [Google Scholar]
- Westrope, C.; Banick, R.; Levine, M. Groundtruthing OpenStreetMap Building Damage Assessment. Procedia Eng. 2014, 78, 29–39. [Google Scholar] [CrossRef]
- Goodchild, M.F.; Li, L. Assuring the quality of volunteered geographic information. Spat. Stat. 2012, 1, 110–120. [Google Scholar] [CrossRef]
- Raymond, E.S. The Cathedral & the Bazaar—Musings on Linux & Open Source by an Accidental Revolutionary; O’Reilly: Beijing, China, 1999. [Google Scholar]
- Mooney, P.; Corcoran, P. Characteristics of Heavily Edited Objects in OpenStreetMap. Future Internet 2012, 4, 285–305. [Google Scholar] [CrossRef]
- Haklay, M.; Basiouka, S.; Antoniou, V.; Ather, A. How Many Volunteers Does it Take to Map an Area Well The Validity of Linus’ Law to Volunteered Geographic Information. Cartogr. J. World Mapp. 2010, 47, 315–322. [Google Scholar] [CrossRef]
- Groot, R.T.A.D. Evaluation of a Volunteered Geographical Information Trust Measure in the Case of OpenStreetMap. Master’s Thesis, Institute of Formal Methods in Computer Science, Brussels, Belgium, 2012. [Google Scholar]
- Mooney, P.; Corcoran, P. Analysis of Interaction and Co-editing Patterns amongst OpenStreetMap Contributors. Trans. GIS 2014, 18, 633–659. [Google Scholar] [CrossRef]
- Ridwan, S.B.; Ferdous, H.S.; Ahmed, S.I. The State of OpenStreetMap in Bangladesh. In Human-Computer Interaction, Tourism and Cultural Heritage; Cipolla-Ficarra, F., Veltman, K., Chih-Fang, H., Cipolla-Ficarra, M., Kratky, A., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7546, pp. 133–143. [Google Scholar]
- Kunwar, B.; Simini, F.; Johansson, A. Large Scale Pedestrian Evacuation Modeling Framework Using Volunteered Geographical Information. Transp. Res. Procedia 2014, 2, 813–818. [Google Scholar] [CrossRef]
- Kunwar, B.; Johansson, A. Measuring Disaster Preparedness of UK Cities from Open Spatial Databases. In Traffic and Granular Flow ’13; Springer International Publishing: Cham, Switzerland, 2015; pp. 265–271. [Google Scholar]
- Palen, L.; Soden, R.; Anderson, T.J.; Barrenechea, M. Success & Scale in a Data-Producing Organization: The Socio-Technical Evolution of OpenStreetMap in Response to Humanitarian Events. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (CHI 2015), Seoul, Korea, 18–23 April 2015; pp. 4113–4122. [Google Scholar]
- Tully, D.; Rhalibi, A.E.; Carter, C.; Sudirman, S. Hybrid 3D Rendering of Large Map Data for Crisis Management. ISPRS Int. J. Geo-Inf. 2015, 4, 1033–1054. [Google Scholar] [CrossRef]
- Tully, D.; Rhalibi, A.; Pan, Z.; Carter, C.; Sudirman, S. Mesh Extraction from a Regular Grid Structure Using Adjacency Matrix. In Image and Graphics; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2015; Volume 9219, pp. 562–572. [Google Scholar]
- Amirian, P.; Basiri, A.; Gales, G.; Winstanley, A.; McDonald, J. The Next Generation of Navigational Services Using OpenStreetMap Data: The Integration of Augmented Reality and Graph Databases. In OpenStreetMap in GIScience; Springer International Publishing: Cham, Switzerland, 2015; pp. 211–228. [Google Scholar]
- Arth, C.; Ventura, J.; Schmalstieg, D. Geospatial Management and Utilization of Large-Scale Urban Visual Reconstructions. In Proceedings of the 2013 Fourth International Conference on Computing for Geospatial Research and Application, San Jose, CA, USA, 22–24 July 2013; pp. 64–69. [Google Scholar]
- Ruta, M.; Scioscia, F.; Filippis, D.D.; Ieva, S.; Binetti, M.; Sciascio, E.D. A Semantic-enhanced Augmented Reality Tool for OpenStreetMap {POI} Discovery. Transp. Res. Procedia 2014, 3, 479–488. [Google Scholar] [CrossRef]
- Ruta, M.; Scioscia, F.; Ieva, S.; Filippis, D.D.; Sciascio, E.D. Indoor/Outdoor Mobile Navigation via Knowledge-Based POI Discovery in Augmented Reality. In Proceedings of the 2015 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT), Singapore, 6–9 December 2015; Volume 3, pp. 26–30. [Google Scholar]
- Goetz, M. Using Crowdsourced Indoor Geodata for the Creation of a Three-Dimensional Indoor Routing Web Application. Future Internet 2012, 4, 575–591. [Google Scholar] [CrossRef]
- Alves, N.; Rocha, J.G. Indoor Spaces in OpenStreetMap, 2013. Available online: http://www.sigte.udg.edu/jornadassiglibre2013/uploads/resumenes_13/r30.pdf (accessed on 7 May 2016).
- Zielstra, D.; Zipf, A. Quantitative studies on the data quality of OpenStreetMap in Germany. In Proceedings of the Sixth International Conference on Geographic Information Science, GIScience, Zurich, Switzerland, 14–17 September 2010; Springer: Zurich, Switzerland, 2010; pp. 20–26. [Google Scholar]
- Ballatore, A.; Bertolotto, M.; Wilson, D.C. Grounding Linked Open Data in WordNet: The Case of the OSM Semantic Network. In Web and Wireless Geographical Information Systems—12th International Symposium, W2GIS 2013, Banff, AB, Canada, April 4–5, 2013. Proceedings; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2013; Volume 7820, pp. 1–15. [Google Scholar]
- Auer, S.; Lehmann, J.; Hellmann, S. The Semantic Web—ISWC 2009. In LinkedGeoData: Adding a Spatial Dimension to the Web of Data; Springer: Berlin/Heidelberg, Germany, 2009; pp. 731–746. [Google Scholar]
- Jilani, M.; Corcoran, P.; Bertolotto, M. Probabilistic Graphical Modelling for Semantic Labelling of Crowdsourced Map Data. In Intelligent Systems Technologies and Applications; Advances in Intelligent Systems and Computing; Springer International Publishing: Cham, Switzerland, 2016; pp. 213–224. [Google Scholar]
- Guptill, S.; Morrison, J. (Eds.) Elements of Spatial Data Quality, 1st ed.; Elsevier Science Limited: Pergamon, Turkey, 1995. [Google Scholar]
- Vandecasteele, A.; Devillers, R. Improving Volunteered Geographic Information Quality Using a Tag Recommender System: The Case of OpenStreetMap. In OpenStreetMap in GIScience—Experiences, Research, and Applications; Arsanjani, J.J., Zipf, A., Mooney, P., Helbich, M., Eds.; Lecture Notes in Geoinformation and Cartography; Springer International Publishing: Cham, Switzerland, 2015; pp. 59–80. [Google Scholar]
- Barta, D. Project OpenStreetMap as open and free source of geodata and maps. In GIS Ostrava 2011; VŠB-Technical University of Ostrava: Ostrava, Czech Republic, 2011; pp. 1–12. [Google Scholar]
- Mashhadi, A.; Quattrone, G.; Capra, L. The Impact of Society on Volunteered Geographic Information: The Case of OpenStreetMap. In OpenStreetMap in GIScience; Lecture Notes in Geoinformation and Cartography; Springer International Publishing: Cham, Switzerland, 2015; pp. 125–141. [Google Scholar]
- Chow, T.E.; Dede-Bamfo, N.; Dahal, K.R. Geographic disparity of positional errors and matching rate of residential addresses among geocoding solutions. Ann. GIS 2015, 22, 29–42. [Google Scholar] [CrossRef]
- Jonietz, D.; Zipf, A. Defining Fitness-for-Use for Crowdsourced Points of Interest (POI). ISPRS Int. J. Geo-Inf. 2016, 5, 149. [Google Scholar] [CrossRef]
- El-Ashmawy, K.L.A. Testing the positional accuracy of OpenStreetMap data for mapping applications. Geod. Cartogr. 2016, 42, 25–30. [Google Scholar] [CrossRef]
- Mohammadi, N.; Malek, M. VGI and Reference Data Correspondence Based on Location-Orientation Rotary Descriptor and Segment Matching. Trans. GIS 2014, 19, 619–639. [Google Scholar] [CrossRef]
- Koukoletsos, T. A Framework for Quality Evaluation of VGI Linear Datasets. Ph.D. Thesis, University College London (UCL), London, UK, 2012. [Google Scholar]
- Graser, A.; Straub, M.; Dragaschnig, M. Towards an Open Source Analysis Toolbox for Street Network Comparison: Indicators, Tools and Results of a Comparison of OSM and the Official Austrian Reference Graph. Trans. GIS 2014, 18, 510–526. [Google Scholar] [CrossRef]
- Al-Bakri, M.; Fairbairn, D. Assessing the Accuracy of Crowdsourced Data and Its Integration with Official Spatial Data Sets. In Proceedings of the Accuracy 2010: Ninth International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences, Leicester, UK, 20–23 July 2010; pp. 317–320. [Google Scholar]
- Forghani, M.; Delavar, M.R. A Quality Study of the OpenStreetMap Dataset for Tehran. ISPRS Int. J. Geo-Inf. 2014, 3, 750–763. [Google Scholar] [CrossRef]
- Zielstra, D.; Hochmair, H. Comparative study of pedestrian accessibility to transit stations using free and proprietary network data. Transp. Res. Rec. J. Transp. Res. Board 2011, 145–152. [Google Scholar] [CrossRef]
- Wang, A.; Hoang, C.D.V.; Kan, M.Y. Perspectives on crowdsourcing annotations for natural language processing. Lang. Resourc. Eval. 2013, 47, 9–31. [Google Scholar] [CrossRef]
- Abdolmajidi, E.; Mansourian, A.; Will, J.; Harrie, L. Matching authority and VGI road networks using an extended node-based matching algorithm. Geo-Spat. Inf. Sci. 2015, 18, 65–80. [Google Scholar] [CrossRef]
- Zielstra, D.; Hochmair, H. Using Free and Proprietary Data to Compare Shortest-Path Lengths for Effective Pedestrian Routing in Street Networks. Transp. Res. Rec. J. Transp. Res. Board 2012, 2299, 41–47. [Google Scholar] [CrossRef]
- Mullen, W.F.; Jackson, S.P.; Croitoru, A.; Crooks, A.; Stefanidis, A.; Agouris, P. Assessing the impact of demographic characteristics on spatial error in volunteered geographic information features. GeoJournal 2014, 80, 587–605. [Google Scholar] [CrossRef]
- Jackson, S.P.; Mullen, W.; Agouris, P.; Crooks, A.; Croitoru, A.; Stefanidis, A. Assessing Completeness and Spatial Error of Features in Volunteered Geographic Information. ISPRS Int. J. Geo-Inf. 2013, 2, 507–530. [Google Scholar] [CrossRef]
- Törnros, T.; Dorn, H.; Hahmann, S.; Zipf, A. Uncertainties of completeness measures in openstreetmap: A case study for buildings in a medium-sized german city. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, II-3-W5, 353–357. [Google Scholar]
- Dorn, H.; Törnros, T.; Zipf, A. Quality Evaluation of VGI Using Authoritative Data—A Comparison with Land Use Data in Southern Germany. ISPRS Int. J. Geo-Inf. 2015, 4, 1657–1671. [Google Scholar] [CrossRef]
- Gröchenig, S.; Brunauer, R.; Rehrl, K. Estimating Completeness of VGI Datasets by Analyzing Community Activity Over Time Periods. In Connecting a Digital Europe through Location and Place; Huerta, J., Schade, S., Granell, C., Eds.; Lecture Notes in Geoinformation and Cartography; Springer International Publishing: Cham, Switzerland, 2014; pp. 3–18. [Google Scholar]
- Egenhofer, M.J.; Al-Taha, K.K. Reasoning about gradual changes of topological relationships. In Theories and Methods of Spatio-Temporal Reasoning in Geographic Space; Springer: Berlin/Heidelberg, Germany, 1992; pp. 196–219. [Google Scholar]
- Corcoran, P.; Mooney, P.; Winstanley, A. Topological Consistent Generalization of OpenStreetMap. In Proceedings of the GISRUK 2010: GIS Research UK 18th Annual Conference, London, UK, 14–16 April 2010. [Google Scholar]
- Corcoran, P.; Mooney, P.; Winstanley, A. Planar and non-planar topologically consistent vector map simplification. Int. J. Geogr. Inf. Sci. 2011, 25, 1659–1680. [Google Scholar] [CrossRef]
- Zhao, S.; Wu, H.; Tu, L.; Huang, B. Segmentation of Urban Areas Using Vector-Based Model. In Proceedings of the 2014 IEEE 11th Intl Conf on Ubiquitous Intelligence and Computing and 2014 IEEE 11th Intl Conf on Autonomic and Trusted Computing and 2014 IEEE 14th Intl Conf on Scalable Computing and Communications and Its Associated Workshops, Bali, Indonesia, 9–12 December 2014; pp. 412–416. [Google Scholar]
- Corcoran, P.; Mooney, P. Characterising the metric and topological evolution of OpenStreetMap network representations. Eur. Phys. J. Spec. Top. 2013, 215, 109–122. [Google Scholar] [CrossRef]
- Jilani, M.; Corcoran, P.; Bertolotto, M. Automated highway tag assessment of OpenStreetMap road networks. In Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Dallas, TX, USA, 4–7 November 2014; pp. 449–452. [Google Scholar]
- Hashemi, P.; Abbaspour, R.A. Assessment of Logical Consistency in OpenStreetMap Based on the Spatial Similarity Concept. In OpenStreetMap in GIScience—Experiences, Research, and Applications; Lecture Notes in Geoinformation and Cartography; Springer International Publishing: Cham, Switzerland, 2015; pp. 19–36. [Google Scholar]
- Sehra, S.S.; Singh, J.; Rai, H.S. Analysing OpenStreetMap Data for Topological Errors. Int. J. Spat. Temporal Multimed. Inf. Syst. 2016, 1, 87–101. [Google Scholar] [CrossRef]
- Al-Bakri, M.M.S. Developing Tools and Models for Evaluating Geospatial Data Integration of Official and VGI Data Sources. Ph.D. Thesis, School of Civil Engineering and Geosciences, New Castle University, Newcastle upon Tyne, UK, 2012. [Google Scholar]
- Yan, Y.; Feng, C.C.; Wang, Y.C. Utilizing fuzzy set theory to assure the quality of volunteered geographic information. GeoJournal 2017, 82, 517–532. [Google Scholar] [CrossRef]
- Flanagin, A.J.; Metzger, M.J. The credibility of volunteered geographic information. GeoJournal 2008, 72, 137–148. [Google Scholar] [CrossRef]
- Rehrl, K.; Gröchenig, S.; Hochmair, H.; Leitinger, S.; Steinmann, R.; Wagner, A. A Conceptual Model for Analyzing Contribution Patterns in the Context of VGI. In Progress in Location-Based Services; Lecture Notes in Geoinformation and Cartography; Springer: Berlin/Heidelberg, Germany, 2013; pp. 373–388. [Google Scholar]
- Budhathoki, N.R. Participants’ motivations to contribute geographic information in an online community. Ph.D. Thesis, University of Illinois at Urbana-Champaign, Urbana, IL, USA, 2010. [Google Scholar]
- Haklay, M. Citizen Science and Volunteered Geographic Information: Overview and Typology of Participation. In Crowdsourcing Geographic Knowledge; Sui, D., Elwood, S., Goodchild, M., Eds.; Crowdsourcing Geographic Knowledge; Springer: Dordrecht, The Netherlands, 2013; pp. 105–122. [Google Scholar]
- Ballatore, A.; Wilson, D.C.; Bertolotto, M. The Similarity Jury: Combining Expert Judgements on Geographic Concepts. In Advances in Conceptual Modeling; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7518. [Google Scholar]
- Ballatore, A.; Wilson, D.C.; Bertolotto, M. A Survey of Volunteered Open Geo-Knowledge Bases in the Semantic Web. In Quality Issues in the Management of Web Information; Pasi, G., Bordogna, G., Jain, L.C., Eds.; Number 50 in Intelligent Systems Reference Library; Springer: Berlin/Heidelberg, Germany, 2013; pp. 93–120. [Google Scholar]
- Codescu, M.; Horsinka, G.; Kutz, O.; Mossakowski, T.; Rau, R. DO-ROAM: Activity-Oriented Search and Navigation with OpenStreetMap. In GeoSpatial Semantics; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2011; Volume 6631, pp. 88–107. [Google Scholar]
- Mülligann, C.; Janowicz, K.; Ye, M.; Lee, W.C. Analyzing the Spatial-Semantic Interaction of Points of Interest in Volunteered Geographic Information. In Spatial Information Theory; Egenhofer, M., Giudice, N., Moratz, R., Worboys, M., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2011; Volume 6899, pp. 350–370. [Google Scholar]
- Hopf, K.; Dageförde, F.; Wolter, D. Identifying the Geographical Scope of Prohibition Signs. In Spatial Information Theory; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2015; Volume 9368, pp. 247–267. [Google Scholar]
- Chuang, T.R.; Deng, D.; Hsu, C.; Lemmens, R. The one and many maps: Participatory and temporal diversities in OpenStreetMap. In Proceedings of the 2nd ACM SIGSPATIAL International Workshop on Crowdsourced and Volunteered Geographic Information, GEOCROWD 2013, Orlando, FL, USA, 5 November 2013; pp. 79–86. [Google Scholar]
- Gröchenig, S.; Brunauer, R.; Rehrl, K. Digging into the history of VGI data-sets: Results from a worldwide study on OpenStreetMap mapping activity. J. Locat. Based Serv. 2014, 8, 198–210. [Google Scholar] [CrossRef]
- Yasseri, T.; Quattrone, G.; Mashhadi, A.J. Temporal analysis of activity patterns of editors in collaborative mapping project of OpenStreetMap. In Proceedings of the 9th International Symposium on Open Collaboration, Hong Kong, China, 5–7 August 2013; pp. 13:1–13:4. [Google Scholar]
- Hast, I. Quality Assessment of Spatial Data: Positional Uncertainties of the National Shoreline Data of Sweden. Master’s Thesis, University of Gävle, Gävle, Sweden, 2014. [Google Scholar]
- Hochmair, H.H.; Zielstra, D.; Neis, P. Assessing the Completeness of Bicycle Trail and Lane Features in OpenStreetMap for the United States. Trans. GIS 2015, 19, 63–81. [Google Scholar] [CrossRef]
- Ciepłuch, J.; Ciepłuch, B.; Jacob, R.; Mooney, P. Hide and Tweet: A game to teach schoolchildren about spatial technologies. In ICEP 2011: International Conference on Engaging Pedagogies; Griffith College: Dublin, Ireland, 2011; pp. 1–8. [Google Scholar]
- Elwood, S.; Goodchild, M.F.; Sui, D. Crowdsourcing Geographic Knowledge. In Prospects for VGI Research and the Emerging Fourth Paradigm; Sui, D.Z., Elwood, S., Goodchild, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 361–375. [Google Scholar]
- Fritz, S.; McCallum, I.; Schill, C.; Perger, C.; Grillmayer, R.; Achard, F.; Kraxner, F.; Obersteiner, M. Geo-Wiki.Org: The Use of Crowdsourcing to Improve Global Land Cover. Remote Sens. 2009, 1, 345–354. [Google Scholar] [CrossRef]
- Muller, C.; Chapman, L.; Johnston, S.; Kidd, C.; Illingworth, S.; Foody, G.; Overeem, A.; Leigh, R. Crowdsourcing for climate and atmospheric sciences: current status and future potential. Int. J. Climatol. 2015, 35, 3185–3203. [Google Scholar] [CrossRef]
- Martella, R.; Kray, C.; Clementini, E. A Gamification Framework for Volunteered Geographic Information. In AGILE 2015; Bacao, F., Yasmina Santos, M., Painho, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 73–89. [Google Scholar]
- Arsanjani, J.J.; Mooney, P.; Helbich, M.; Zipf, A. An Exploration of Future Patterns of the Contributions to OpenStreetMap and Development of a Contribution Index. Trans. GIS 2015, 19, 896–914. [Google Scholar] [CrossRef]
- Jacob, R.; Zheng, J.; Ciepluch, B.; Mooney, P.; Winstanley, A.C. Campus Guidance System for International Conferences Based on OpenStreetMap. In Web and Wireless Geographical Information Systems, 9th International Symposium, W2GIS 2009, Maynooth, Ireland, December 7–8, 2009. Proceedings; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2009; Volume 5886, pp. 187–198. [Google Scholar]
- Sankar, C.P.; Vidyaraj, R.; Midhun, V.; Kumar, K.S.; Asokan, K. Analysis of road network of the buffer area of Kochi metro rail using tools of social network analysis. In Proceedings of the International Conference on Information Science (ICIS 2014), Auckland, New Zealand, 14–17 December 2014; Volume 1. [Google Scholar]
- Kelman, I.; Luthe, T.; Wyss, R.; Tørnblad, S.H.; Evers, Y.; Curran, M.M.; Williams, R.J.; Berlow, E.L. Social Network Analysis and Qualitative Interviews for Assessing Geographic Characteristics of Tourism Business Networks. PLoS ONE 2016, 11, e0156028. [Google Scholar] [CrossRef] [PubMed]
- Lease, M. On Quality Control and Machine Learning in Crowdsourcing. In Proceedings of the 11th AAAI Conference on Human Computation, San Francisco, CA, USA, 7–11 August 2011; pp. 97–102. [Google Scholar]
- Hagenauer, J.; Helbich, M. Mining urban land-use patterns from volunteered geographic information by means of genetic algorithms and artificial neural networks. Int. J. Geogr. Inf. Sci. 2012, 26, 963–982. [Google Scholar] [CrossRef]
- Feick, R.; Robertson, C. Advances in Spatial Data Handling and Analysis. In Identifying Locally- and Globally-Distinctive Urban Place Descriptors from Heterogeneous User-Generated Content; Springer: Berlin/Heidelberg, Germany, 2015; pp. 51–63. [Google Scholar]
- Ballatore, A. Defacing the Map: Cartographic Vandalism in the Digital Commons. Cartogr. J. World Mapp. 2014, 51, 214–224. [Google Scholar] [CrossRef]
- Kitchin, R. Big data and human geography: Opportunities, challenges and risks. Dialogues Hum. Geogr. 2013, 3, 262–267. [Google Scholar] [CrossRef]
- Mooney, P.; Winstanley, A.C. Is VGI big data. In Proceedings of the Twenty-Third Annual GIS Research UK Conference, Leeds, UK, 15–17 April 2015. [Google Scholar]
- Goodchild, M.; Pfoser, D.; Sui, D. GEOCROWD 2012 Workshop Report: The First Int’L Workshop on Crowdsourced and Volunteered Geographic Information 2012 (Redondo Beach, CA— November 6, 2012). SIGSPATIAL Spec. 2013, 5, 7–8. [Google Scholar] [CrossRef]
- Gao, S.; Li, L.; Li, W.; Janowicz, K.; Zhang, Y. Constructing gazetteers from volunteered Big Geo-Data based on Hadoop. Comput. Environ. Urban Syst. 2014, 61, 172–186. [Google Scholar] [CrossRef]
- Miller, H.J.; Goodchild, M.F. Data-driven geography. GeoJournal 2014, 80, 449–461. [Google Scholar] [CrossRef]
- Alarabi, L.; Eldawy, A.; Alghamdi, R.; Mokbel, M.F. TAREEG: A MapReduce-based web service for extracting spatial data from OpenStreetMap. In Proceedings of the International Conference on Management of Data (SIGMOD 2014), Snowbird, UT, USA, 22–27 June 2014; pp. 897–900. [Google Scholar]
- Eldawy, A.; Mokbel, M.F. Pigeon: A spatial MapReduce language. In Proceedings of the 2014 IEEE 30th International Conference on Data Engineering, Chicago, IL, USA, 31 March–4 April 2014; pp. 1242–1245. [Google Scholar]
- Ma, D.; Sandberg, M.; Jiang, B. Characterizing the Heterogeneity of the OpenStreetMap Data and Community. ISPRS Int. J. Geo-Inf. 2015, 4, 535–550. [Google Scholar] [CrossRef]
Inclusion Criteria | Exclusion Criteria |
---|---|
|
|
S. No. | Steps | Number of Papers |
---|---|---|
1. | Online/bibliographic databases search | 2889 |
2. | Filtered for particular search phrases/within databases | 877 |
3. | Elimination of duplications | 165 |
4. | Elimination of non-focused and unwanted papers based on exclusion criteria | 227 |
Name of Researcher | Number of Publications |
---|---|
Peter Mooney | 45 |
Alexander Zipf | 25 |
Padraig Corcoran | 23 |
Pascal Neis | 15 |
Ricky Jacob | 14 |
Blazej Ciepluch | 13 |
Jamal Jokar Arsanjani | 12 |
Andrea Ballatore | 12 |
Dennis Zielstra | 8 |
Journal Name | Number of Publications |
---|---|
ISPRS International Journal of Geo-Information | 27 |
Transactions in GIS | 15 |
International Journal of Geographical Information Science | 18 |
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences | 14 |
GeoJournal | 4 |
Computers, Environment and Urban Systems | 3 |
Future Internet | 5 |
International Journal of Digital Earth | 4 |
Survey Review | 3 |
Applied Geomatics | 3 |
Remote Sensing | 4 |
Geoinformatics FCECTU | 3 |
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | 3 |
Annals of GIS | 2 |
Applied Geography | 2 |
Topic No. | Topic Label | Fifteen High-Loading Terms |
---|---|---|
T5.1 | Quality assessment and analysis | data qualiti network road spatial model assess map rout user mobil servic urban semant street |
T5.2 | Assessment of contributors’ behavior | qualiti contributor map contribut assess complet volunt activ land semant trust accuraci edit analysi |
T5.3 | Applications to navigation and disaster | servic mobil user map devic indoor web haptic navig collabor spatial visual interfac queri disast |
T5.4 | Traffic simulation and mobility | traffic simul activ map commun contributor citi collabor urban contribut swarm sumo time real |
T5.5 | Indoor navigation models | indoor rout build qualiti transport land public plan germani trust footprint floor accuraci complet |
Topic No. | Topic Label | 2007–2016 | 2007–2011 | 2012–2016 |
---|---|---|---|---|
T3.1 | Quality assessment and analysis | 365 | 62 | 303 |
T3.2 | Routing and navigation | 21 | 5 | 16 |
T3.3 | Miscellaneous | 4 | 2 | 2 |
T5.1 | Quality assessment and analysis | 329 | 57 | 272 |
T5.2 | Assessment of contributors’ behavior | 4 | 1 | 3 |
T5.3 | Applications to navigation and disaster | 12 | 7 | 5 |
T5.4 | Traffic simulation and mobility | 16 | 0 | 16 |
T5.5 | Indoor navigation models | 8 | 0 | 8 |
T10.1 | Quality assessment and analysis | 255 | 50 | 205 |
T10.2 | Assessment of contributors’ behavior | 5 | 1 | 4 |
T10.3 | Algorithmic model development | 22 | 0 | 22 |
T10.4 | Model for haptics in navigation assistance | 1 | 1 | 0 |
T10.5 | Semantic similarity | 15 | 3 | 12 |
T10.6 | Contributors and trust in data | 3 | 1 | 2 |
T10.7 | Indoor navigation models | 14 | 0 | 14 |
T10.8 | Street network models | 5 | 0 | 5 |
T10.9 | Disaster management | 3 | 2 | 1 |
T10.10 | Routing and navigation | 4 | 3 | 1 |
Topic No. | Topic Labels | High-Loading Papers | Loading |
---|---|---|---|
T5.1 | Quality assessment and analysis | [44] | 0.359 |
[45] | 0.330 | ||
[46] | 0.314 | ||
[47] | 0.312 | ||
[48] | 0.301 | ||
T5.2 | Assessment of contributors’ behavior | [49] | 0.321 |
[50] | 0.287 | ||
[51] | 0.257 | ||
[52] | 0.195 | ||
[53] | 0.185 | ||
T5.3 | Applications to navigation and disaster | [54] | 0.259 |
[55] | 0.240 | ||
[56] | 0.181 | ||
[57] | 0.165 | ||
[58] | 0.142 | ||
T5.4 | Traffic simulation and mobility | [59] | 0.288 |
[60] | 0.283 | ||
[61] | 0.274 | ||
[62] | 0.273 | ||
[63] | 0.252 | ||
T5.5 | Indoor navigation models | [64] | 0.319 |
[65] | 0.314 | ||
[66] | 0.305 | ||
[67] | 0.222 | ||
[68] | 0.221 |
Topic No. | Topic Label | 2007–2016 | 2007–2011 | 2012–2016 |
---|---|---|---|---|
T50.1 | Quality assessment | 185 | 39 | 146 |
T50.2 | Indoor navigation | 7 | 2 | 5 |
T50.3 | Mobile-based services | 1 | 1 | 0 |
T50.4 | Traffic simulation and management | 8 | 0 | 8 |
T50.5 | Indoor planning and simulation | 2 | 0 | 2 |
T50.6 | Land-use patterns | 13 | 0 | 13 |
T50.7 | Road matching algorithm | 4 | 0 | 4 |
T50.8 | Smart cities and mobility | 6 | 0 | 6 |
T50.9 | Haptic for navigation | 5 | 3 | 2 |
T50.10 | Street networks | 4 | 2 | 2 |
T50.11 | OSM for routing | 6 | 1 | 5 |
T50.12 | OSM for wireless sensor networks | 4 | 0 | 4 |
T50.13 | Disaster management | 5 | 2 | 3 |
T50.14 | Reducing travel times | 1 | 0 | 1 |
T50.15 | Assessment of building models | 2 | 0 | 2 |
T50.16 | Shortest path computation | 6 | 0 | 6 |
T50.17 | Automated comparison | 1 | 0 | 1 |
T50.18 | Location-based services | 3 | 1 | 2 |
T50.19 | OSM for generating descriptions | 1 | 0 | 1 |
T50.20 | Data extraction from OSM | 1 | 0 | 0 |
T50.21 | Framework for semantic annotation | 2 | 0 | 2 |
T50.22 | Diversity of OSM road network | 1 | 0 | 1 |
T50.23 | Trust in OSM data | 3 | 0 | 3 |
T50.24 | Digital maps | 1 | 0 | 1 |
T50.25 | Estimating building types | 1 | 0 | 1 |
T50.26 | Contributors’ patterns | 1 | 0 | 1 |
T50.27 | Generative models and maps for blinds | 2 | 0 | 2 |
T50.28 | OSM for pervasive applications | 4 | 2 | 2 |
T50.29 | Conflation of maps | 1 | 0 | 1 |
T50.30 | Managing OSM tags | 4 | 1 | 3 |
T50.31 | Web mapping interface | 5 | 0 | 5 |
T50.32 | Humanitarian efforts | 2 | 0 | 2 |
T50.33 | Data mining approaches for OSM data | 4 | 0 | 4 |
T50.34 | Evacuation modeling | 2 | 0 | 2 |
T50.35 | Automatic scale assignment to OSM features | 1 | 0 | 1 |
T50.36 | Matching points-of-interest (POIs) | 2 | 0 | 2 |
T50.37 | Integration and transformation for borderland analysis | 1 | 0 | 1 |
T50.38 | Crowdsourced map | 2 | 1 | 1 |
T50.39 | OSM for autonomous navigation | 3 | 1 | 2 |
T50.40 | Real time tracking | 3 | 2 | 1 |
T50.41 | Flood modeling | 3 | 0 | 3 |
T50.42 | Computer vision-based methods for data generation | 4 | 1 | 3 |
T50.43 | Assessment of geocoding services | 2 | 0 | 2 |
T50.44 | OSM for traffic generator | 1 | 0 | 1 |
T50.45 | Event related mining | 3 | 0 | 3 |
T50.46 | Evaluation of mapping APIs | 1 | 0 | 1 |
T50.47 | OSM for situational awareness | 2 | 0 | 2 |
T50.48 | Automatic recommendation OSM categories | 1 | 0 | 1 |
T50.49 | Enriching turn restrictions | 1 | 0 | 1 |
T50.50 | Polygon inspection in XML data | 1 | 1 | 0 |
Topic No. | Five Topic Labels | Fifty Topics No. | Fifty Topic Labels |
---|---|---|---|
T5.1 | Quality assessment and analysis | T50.1 | Quality assessment |
T50.6 | Land-use patterns | ||
T50.7 | Road matching algorithms | ||
T50.10 | Street networks | ||
T50.11 | OSM for routing | ||
T50.12 | OSM for wireless sensor networks | ||
T50.15 | Assessment of building models | ||
T50.16 | Shortest path computation | ||
T50.17 | Automated comparison | ||
T50.18 | Location-based services | ||
T50.19 | OSM for generating descriptions | ||
T50.20 | Data extraction from OSM | ||
T50.21 | Framework for semantic annotation | ||
T50.22 | Diversity of OSM road network | ||
T50.24 | Digital maps | ||
T50.25 | Estimating building types | ||
T50.27 | Generative models and maps for blinds | ||
T50.28 | OSM for pervasive applications | ||
T50.29 | Conflation of maps | ||
T50.30 | Managing OSM tags | ||
T50.31 | Web mapping interface | ||
T50.33 | Data mining approaches for OSM data | ||
T50.35 | Automatic scale assignment to OSM features | ||
T50.36 | Matching POIs | ||
T50.37 | Integration and transformation for borderland analysis | ||
T50.38 | Crowdsourced map | ||
T50.39 | OSM for autonomous navigation | ||
T50.40 | Real time tracking | ||
T50.41 | Flood modeling | ||
T50.42 | Computer vision-based methods for data generation | ||
T50.43 | Assessment of geocoding services | ||
T50.44 | OSM for traffic generator | ||
T50.45 | Event related mining | ||
T50.46 | Evaluation of mapping APIs | ||
T50.47 | OSM for situational awareness | ||
T50.48 | Automatic recommendation OSM categories | ||
T50.49 | Enriching turn restrictions | ||
T50.50 | Polygon inspection in XML data | ||
T5.2 | Assessment of contributors’ behavior | T50.23 | Trust in OSM data |
T50.26 | Contributors’ patterns | ||
T5.3 | Applications to navigation and disaster | T50.3 | Mobile-based services |
T50.9 | Haptic for navigation | ||
T50.13 | Disaster management | ||
T50.34 | Evacuation modeling | ||
T50.32 | Humanitarian efforts | ||
T5.4 | Traffic simulation and mobility | T50.4 | Traffic simulation and management |
T50.8 | Smart cities and mobility | ||
T50.14 | Reducing travel times | ||
T5.5 | Indoor navigation models | T50.2 | Indoor navigation |
T50.5 | Indoor planning and simulation |
Quality Indicator | Methods Used |
---|---|
Positional accuracy | For Point Data:
|
For Line Data: | |
Completeness | Extrinsic relative measures: Statistical analysis of the features in reference and OSM dataset for predefined area [7,44,53,77,78,81,85,91,97,98,114,136,137,185,192,201,202,203,204,205,206,207,208]. |
Intrinsic measures: Assessment of tags of OSM data representing real world features [7,49,50,77,87,104,170,209] | |
Logical consistency | The topological consistency (as suggested by Servigne et al. [75] based on 9-intersection model [210]), geometrical modeling (based on geometric properties of graphs) and semantic modeling (based on tags essential for navigation) were used to assess the logical consistency in various studies [79,95,203,211,212,213,214,215,216,217]. |
Attribute accuracy | Attribute accuracy represents correctness of quantitative and non-quantitative attributes [79]. |
Semantic accuracy | Semantic accuracy is evaluated through tags and three measures as suggested by Vandecasteele and Devillers [190]: |
Temporal accuracy | Analysis of history file on the basis of temporal measures:
|
Lineage | Lineage is measured by analyzing the history file by checking source information in the ’tag’ attribute [79,84]. |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sehra, S.S.; Singh, J.; Rai, H.S. Using Latent Semantic Analysis to Identify Research Trends in OpenStreetMap. ISPRS Int. J. Geo-Inf. 2017, 6, 195. https://doi.org/10.3390/ijgi6070195
Sehra SS, Singh J, Rai HS. Using Latent Semantic Analysis to Identify Research Trends in OpenStreetMap. ISPRS International Journal of Geo-Information. 2017; 6(7):195. https://doi.org/10.3390/ijgi6070195
Chicago/Turabian StyleSehra, Sukhjit Singh, Jaiteg Singh, and Hardeep Singh Rai. 2017. "Using Latent Semantic Analysis to Identify Research Trends in OpenStreetMap" ISPRS International Journal of Geo-Information 6, no. 7: 195. https://doi.org/10.3390/ijgi6070195
APA StyleSehra, S. S., Singh, J., & Rai, H. S. (2017). Using Latent Semantic Analysis to Identify Research Trends in OpenStreetMap. ISPRS International Journal of Geo-Information, 6(7), 195. https://doi.org/10.3390/ijgi6070195