Next Article in Journal
Evaluation of Feature Selection Methods for Object-Based Land Cover Mapping of Unmanned Aerial Vehicle Imagery Using Random Forest and Support Vector Machine Classifiers
Next Article in Special Issue
Multi-Feature Joint Sparse Model for the Classification of Mangrove Remote Sensing Images
Previous Article in Journal
The Effects of Rural Settlement Evolution on the Surrounding Land Ecosystem Service Values: A Case Study in the Eco-Fragile Areas, China
Previous Article in Special Issue
Closing the Skill Gap of Cloud CRM Application Services in Cloud Computing for Evaluating Big Data Solutions
Article Menu
Issue 2 (February) cover image

Export Article

Open AccessArticle
ISPRS Int. J. Geo-Inf. 2017, 6(2), 47; doi:10.3390/ijgi6020047

A Formal Framework for Integrated Environment Modeling Systems

1
School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
2
School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China
*
Author to whom correspondence should be addressed.
Academic Editors: Jason C. Hung, Yu-Wei Chan, Neil Y. Yen, Qingguo Zhou and Wolfgang Kainz
Received: 30 October 2016 / Revised: 21 January 2017 / Accepted: 10 February 2017 / Published: 17 February 2017
(This article belongs to the Special Issue Advanced Geo-Information Technologies for Anticipatory Computing)
View Full-Text   |   Download PDF [4838 KB, uploaded 21 February 2017]   |  

Abstract

Integrated Environment Modeling (IEM) has become more and more important for environmental studies and applications. IEM systems have also been extended from scientific studies to much wider practical application situations. The quality and improved efficiency of IEM systems have therefore become increasingly critical. Although many advanced and creative technologies have been adopted to improve the quality of IEM systems, there is scarcely any formal method for evaluating and improving them. This paper is devoted to proposing a formal method to improve the quality and the developing efficiency of IEM systems. Two primary contributions are made. Firstly, a formal framework for IEM is proposed. The framework not only reflects the static and dynamic features of IEM but also covers different views from variant roles throughout the IEM lifecycle. Secondly, the formal operational semantics corresponding to the former model of the IEM is derived in detail; it can be used as the basis for aiding automated integrated modeling and verifying the integrated model. View Full-Text
Keywords: Integrated Environment Modeling (IEM); formal method; operational semantics; unified view; Finite State Machine (FSM) Integrated Environment Modeling (IEM); formal method; operational semantics; unified view; Finite State Machine (FSM)
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Zhang, G.; Li, Y.; Chen, C.; Zhou, R.; Chen, D.; Zhou, Q. A Formal Framework for Integrated Environment Modeling Systems. ISPRS Int. J. Geo-Inf. 2017, 6, 47.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
ISPRS Int. J. Geo-Inf. EISSN 2220-9964 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top