PHI-1, an Endogenous Inhibitor Protein for Protein Phosphatase-1 and a Pan-Cancer Marker, Regulates Raf-1 Proteostasis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Udell, C.M.; Rajakulendran, T.; Sicheri, F.; Therrien, M. Mechanistic principles of RAF kinase signaling. Cell. Mol. Life Sci. 2011, 68, 553–565. [Google Scholar] [CrossRef] [PubMed]
- Dhillon, A.S.; von Kriegsheim, A.; Grindlay, J.; Kolch, W. Phosphatase and feedback regulation of Raf-1 signaling. Cell Cycle 2007, 6, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Kyriakis, J.M. The integration of signaling by multiprotein complexes containing Raf kinases. Biochim. Biophys. Acta 2007, 1773, 1238–1247. [Google Scholar] [CrossRef] [PubMed]
- Wimmer, R.; Baccarini, M. Partner exchange: Protein–protein interactions in the Raf pathway. Trends Biochem. Sci. 2010, 35, 660–668. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Fujii, K.; Zhang, L.; Roberts, T.; Fu, H. Raf-1 promotes cell survival by antagonizing apoptosis signal-regulating kinase 1 through a MEK–ERK independent mechanism. Proc. Natl. Acad. Sci. USA 2001, 98, 7783–7788. [Google Scholar] [CrossRef]
- O’Neill, E.; Rushworth, L.; Baccarini, M.; Kolch, W. Role of the Kinase MST2 in Suppression of Apoptosis by the Proto-Oncogene Product Raf-1. Science 2004, 306, 2267–2270. [Google Scholar] [CrossRef] [PubMed]
- Ehrenreiter, K.; Piazzolla, D.; Velamoor, V.; Sobczak, I.; Small, J.V.; Takeda, J.; Leung, T.; Baccarini, M. Raf-1 regulates Rho signaling and cell migration. J. Cell Biol. 2005, 168, 955–964. [Google Scholar] [CrossRef] [PubMed]
- Galabova-Kovacs, G.; Kolbus, A.; Matzen, D.; Meiss, K.; Piazzolla, D.; Rubiolo, C.; Steinitz, K.; Baccarini, M. ERK and Beyond: Insights from B-Raf and Raf-1 Conditional Knockouts. Cell Cycle 2006, 5, 1514–1518. [Google Scholar] [CrossRef]
- Mikula, M.; Schreiber, M.; Husak, Z.; Kucerova, L.; Rüth, J.; Wieser, R.; Zatloukal, K.; Beug, H.; Wagner, E.F.; Baccarini, M. Embryonic lethality and fetal liver apoptosis in mice lacking the c-raf-1 gene. EMBO J. 2001, 20, 1952–1962. [Google Scholar] [CrossRef]
- Hüser, M.; Luckett, J.; Chiloeches, A.; Mercer, K.; Iwobi, M.; Giblett, S.; Sun, X.; Brown, J.; Marais, R.; Pritchard, C. MEK kinase activity is not necessary for Raf-1 function. EMBO J. 2001, 20, 1940–1951. [Google Scholar] [CrossRef]
- Beck, T.W.; Brennscheidt, U.; Sithanandam, G.; Cleveland, J.; Rapp, U.R. Molecular organization of the human Raf-1 promoter region. Mol. Cell. Biol. 1990, 10, 3325–3333. [Google Scholar] [CrossRef] [PubMed]
- Noble, C.; Mercer, K.; Hussain, J.; Carragher, L.; Giblett, S.; Hayward, R.; Patterson, C.; Marais, R.; Pritchard, C.A. CRAF Autophosphorylation of Serine 621 is required to prevent its proteasome-mediated degradation. Mol. Cell 2008, 31, 862–872. [Google Scholar] [CrossRef] [PubMed]
- Schulte, T.W.; Blagosklonny, M.V.; Ingui, C.; Neckers, L. Disruption of the raf-1-Hsp90 molecular complex results in destabilization of Raf-1 and loss of raf-1-Ras association. J. Biol. Chem. 1995, 270, 24585–24588. [Google Scholar] [CrossRef] [PubMed]
- Dogan, T.; Harms, G.S.; Hekman, M.; Karreman, C.; Oberoi, T.K.; Alnemri, E.S.; Rapp, U.R.; Rajalingam, K. X-linked and cellular IAPs modulate the stability of C-RAF kinase and cell motility. Nature 2008, 10, 1447–1455. [Google Scholar] [CrossRef]
- Sanz, C.; León, Y.; Troppmair, J.; Rapp, U.R.; Varela-Nieto, I. Strict regulation of c-Raf kinase levels is required for early organogenesis of the vertebrate inner ear. Oncogene 1999, 18, 429–437. [Google Scholar] [CrossRef]
- Kolbus, A.; Pilat, S.; Husak, Z.; Deiner, E.M.; Stengl, G.; Beug, H.; Baccarini, M. Raf-1 antagonizes erythroid differentiation by restraining caspase activation. J. Exp. Med. 2002, 196, 1347–1353. [Google Scholar] [CrossRef]
- Schmidt, C.A.; Oettle, H.; Ludwig, W.-D.; Serke, S.; Pawlaczyk-Peter, B.; Wilborn, F.; Binder, L.; Huhn, D.; Siegert, W. Overexpression of the Raf-1 proto-oncogene in human myeloid leukemia. Leuk. Res. 1994, 18, 409–413. [Google Scholar] [CrossRef]
- Riva, C.; Lavieille, J.-P.; Reyt, E.; Brambilla, E.; Lunardi, J.; Brambilla, C. differential c-myc, c-jun, c-raf and p53 expression in squamous cell carcinoma of the head and neck: Implication in drug and radioresistance. Eur. J. Cancer Part B Oral Oncol. 1995, 31, 384–391. [Google Scholar] [CrossRef]
- McPhillips, F.; Mullen, P.; Monia, B.P.; A Ritchie, A.; A Dorr, F.; Smyth, J.F.; Langdon, S.P. Association of c-Raf expression with survival and its targeting with antisense oligonucleotides in ovarian cancer. Br. J. Cancer 2001, 85, 1753–1758. [Google Scholar] [CrossRef]
- Jilaveanu, L.B.; Zito, C.R.; Aziz, S.A.; Conrad, P.J.; Schmitz, J.C.; Sznol, M.; Camp, R.L.; Rimm, D.L.; Kluger, H.M. C-raf is associated with disease progression and cell proliferation in a subset of melanomas. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2009, 15, 5704–5713. [Google Scholar] [CrossRef]
- Egloff, M.; Johnson, D.F.; Moorhead, G.; Cohen, P.T.W.; Cohen, P.; Barford, D. Structural basis for the recognition of regulatory subunits by the catalytic subunit of protein phosphatase 1. EMBO J. 1997, 16, 1876–1887. [Google Scholar] [CrossRef] [PubMed]
- Choy, M.S.; Page, R.; Peti, W. Regulation of protein phosphatase 1 by intrinsically disordered proteins. Biochem. Soc. Trans. 2012, 40, 969–974. [Google Scholar] [CrossRef] [PubMed]
- Heroes, E.; Lesage, B.; Görnemann, J.; Beullens, M.; Van Meervelt, L.; Bollen, M. The PP1 binding code: A molecularlego strategy that governs specificity. FEBS J. 2013, 280, 584–595. [Google Scholar] [CrossRef] [PubMed]
- Casamayor, A.; Ariño, J. Controlling ser/thr protein phosphatase pp1 activity and function through interaction with regulatory subunits. Adv. Protein Chem. Struct. Biol. 2020, 122, 231–288. [Google Scholar] [PubMed]
- Eto, M. Regulation of Cellular Protein Phosphatase-1 (PP1) by Phosphorylation of the CPI-17 Family, C-kinase-activated PP1 Inhibitors. J. Biol. Chem. 2009, 284, 35273–35277. [Google Scholar] [CrossRef]
- Eto, M.; Brautigan, D.L. Endogenous inhibitor proteins that connect Ser/Thr kinases and phosphatases in cell signaling. IUBMB Life 2012, 64, 732–739. [Google Scholar] [CrossRef]
- Cao, X.; Lemaire, S.; Bollen, M. Protein phosphatase 1: Life-course regulation by sds22 and inhibitor-3. FEBS J. 2022, 289, 3072–3085. [Google Scholar] [CrossRef]
- Lagercrantz, J.; Kendra, D.; Carson, E.; Nordenskjold, M.; Dumanski, J.P.; Weber, G.; Piehl, F. Sequence and expression of the mouse homologue to human phospholipase c b3 neighboring gene. Biochem. Biophys. Res. Comm. 1996, 223, 335–340. [Google Scholar] [CrossRef]
- Eto, M.; Karginov, A.; Brautigan, D.L. A Novel Phosphoprotein Inhibitor of Protein Type-1 Phosphatase Holoenzymes. Biochemistry 1999, 38, 16952–16957. [Google Scholar] [CrossRef]
- Nagaraj, N.; Wisniewski, J.R.; Geiger, T.; Cox, J.; Kircher, M.; Kelso, J.; Pääbo, S.; Mann, M. Deep proteome and transcriptome mapping of a human cancer cell line. Mol. Syst. Biol. 2011, 7, 548. [Google Scholar] [CrossRef]
- Bassols, A.; Miquel-Serra, L.; Hernandez, D.; Docampo, M.J. Differential expression of endoglin in human melanoma cells expressing the V3 isoform of versican by microarray analysis. Mol. Med. Rep. 2010, 3, 1035–1039. [Google Scholar] [CrossRef] [PubMed]
- Worley, M.J.; Liu, S.; Hua, Y.; Kwok, J.S.-L.; Samuel, A.; Hou, L.; Shoni, M.; Lu, S.; Sandberg, E.M.; Keryan, A.; et al. Molecular changes in endometriosis-associated ovarian clear cell carcinoma. Eur. J. Cancer 2015, 51, 1831–1842. [Google Scholar] [CrossRef] [PubMed]
- Mosquera Orgueira, A.; Antelo Rodríguez, B.; Díaz Arias, J.; Díaz Varela, N.; Bello López, J.L. A three-gene expression signature identifies a cluster of patients with short survival in chronic lymphocytic leukemia. J. Oncol. 2019, 2019, 9453539. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Wu, Y.; Yu, J.; Yang, G.; Yi, H.; Xu, B. Plasma messenger RNAs identified through bioinformatics analysis are novel, non-invasive prostate cancer biomarkers. Onco. Targets Ther. 2020, 13, 541–548. [Google Scholar] [CrossRef] [PubMed]
- Deng, M.; Peng, L.; Li, J.; Liu, X.; Xia, X.; Li, G. PPP1R14B Is a Prognostic and Immunological Biomarker in Pan-Cancer. Front. Genet. 2021, 12, 763561. [Google Scholar] [CrossRef]
- Cheng, L.; Mi, J.; Zhang, J.; Huang, H.; Mo, Z. Upregulated PPP1R14B is connected to cancer progression and immune infiltration in kidney renal clear cell carcinoma. Clin. Transl. Oncol. 2023. [Google Scholar] [CrossRef]
- Liao, L.; Zhang, Y.-L.; Deng, L.; Chen, C.; Ma, X.-Y.; Andriani, L.; Yang, S.-Y.; Hu, S.-Y.; Zhang, F.-L.; Shao, Z.-M.; et al. Protein phosphatase 1 subunit ppp1r14b stabilizes STMN1 to promote progression and paclitaxel resistance in triple-negative breast cancer. Cancer Res. 2022, 83, 471–484. [Google Scholar] [CrossRef]
- Zheng, Y.-X.; Shi, S.; Jiang, X.-H.; Liu, K.-C.; Qin, Z.-J.; Wang, Y.-Y.; Li, Z.-H.; Chen, M.-W. Comprehensive analysis of protein phosphatase 1 regulatory inhibitor subunit 14B, a molecule related to tumorigenesis, poor prognosis, and immune cell infiltration in lung adenocarcinoma. Am. J. Transl. Res. 2023, 15, 858–877. [Google Scholar]
- Lang, I.; Virk, G.; Zheng, D.C.; Young, J.; Nguyen, M.J.; Amiri, R.; Fong, M.; Arata, A.; Chadaideh, K.S.; Walsh, S.; et al. The evolution of duplicated genes of the cpi-17/phi-1 (ppp1r14) family of protein phosphatase 1 inhibitors in teleosts. Int. J. Mol. Sci. 2020, 21, 5709. [Google Scholar] [CrossRef]
- Deng, J.T.; Sutherland, C.; Brautigan, D.L.; Eto, M.; Walsh, M.P. Phosphorylation of the myosin phosphatase inhibitors, CPI-17 and PHI-1, by integrin-linked kinase. Biochem. J. 2002, 367 Pt 2, 517–524. [Google Scholar] [CrossRef]
- Pang, H.; Guo, Z.; Xie, Z.; Su, W.; Gong, M.C. Divergent kinase signaling mediates agonist-induced phosphorylation of phosphatase inhibitory proteins PHI-1 and CPI-17 in vascular smooth muscle cells. Am. J. Physiol. Physiol. 2006, 290, C892–C899. [Google Scholar] [CrossRef] [PubMed]
- El-Touhky, A.; Given, A.M.; Cochard, A.; Brozovich, F.V. PHI-1 induced enhancement of myosin phosphorylation in chicken smooth muscle. FEBS Lett. 2005, 579, 4271–4277. [Google Scholar] [CrossRef] [PubMed]
- Tountas, N.A.; Brautigan, D.L. Migration and retraction of endothelial and epithelial cells require PHI-1, a specific protein-phosphatase-1 inhibitor protein. J. Cell Sci. 2004, 117 Pt 24, 5905–5912. [Google Scholar] [CrossRef]
- Xiang, N.; Chen, T.; Zhao, X.; Zhao, M. In vitro assessment of roles of PPP1R14B in cervical and endometrial cancer. Tissue Cell 2022, 77, 101845. [Google Scholar] [CrossRef] [PubMed]
- Kitazawa, T.; Polzin, A.N.; Eto, M. CPI-17-deficient smooth muscle of chicken. J. Physiol. 2004, 557 Pt 2, 515–528. [Google Scholar] [CrossRef]
- Nagai, T.; Ibata, K.; Park, E.S.; Kubota, M.; Mikoshiba, K.; Miyawaki, A. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat. Biotechnol. 2002, 20, 87–90. [Google Scholar] [CrossRef]
- Kim, J.I.; Young, G.D.; Jin, L.; Somlyo, A.V.; Eto, M. Expression of CPI-17 in smooth muscle during embryonic development and in neointimal lesion formation. Histochem. Cell Biol. 2009, 132, 191–198. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative pcr and the 2(-delta delta c(t)) method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Yuan, J.S.; Reed, A.; Chen, F.; Stewart, C.N., Jr. Statistical analysis of real-time pcr data. BMC Bioinform. 2006, 7, 12. [Google Scholar] [CrossRef]
- MacKintosh, C.; Klumpp, S. Tautomycin from the bacterium streptomyces verticillatus. Another potent and specific inhibitor of protein phosphatases 1 and 2a. FEBS Lett. 1990, 277, 137–140. [Google Scholar] [CrossRef]
- Broustas, C.G.; Grammatikakis, N.; Eto, M.; Dent, P.; Brautigan, D.L.; Kasid, U. Phosphorylation of the myosin-binding subunit of myosin phosphatase by Raf-1 and inhibition of phosphatase activity. J. Biol. Chem. 2002, 277, 3053–3059. [Google Scholar] [CrossRef] [PubMed]
- Schulte, T.W.; An, W.G.; Neckers, L.M. Geldanamycin-induced destabilization of raf-1 involves the proteasome. Biochem. Biophys. Res. Commun. 1997, 239, 655–659. [Google Scholar] [CrossRef] [PubMed]
- Tountas, N.A.; Mandell, J.W.; Everett, A.D.; Brautigan, D.L. Juxtamembrane localization of the protein phosphatase-1 inhibitor protein PHI-1 in smooth muscle cells. Histochem. Cell Biol. 2004, 121, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Zmuidzinas, A.; Mamon, H.J.; Roberts, T.M.; A Smith, K. Interleukin-2-triggered Raf-1 expression, phosphorylation, and associated kinase activity increase through G1 and S in CD3-stimulated primary human T cells. Mol. Cell. Biol. 1991, 11, 2794–2803. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Wang, T.; Huang, X.; Yang, Z.; Wang, Z.; Zhang, S.; Sui, X.; Jiang, J.; Zhao, L. PPP1R14B is a diagnostic prognostic marker in patients with uterine corpus endometrial carcinoma. J. Cell. Mol. Med. 2023, 27, 846–863. [Google Scholar] [CrossRef]
- Eto, M.; Katsuki, S.; Ohashi, M.; Miyagawa, Y.; Tanaka, Y.; Takeya, K.; Kitazawa, T. Possible roles of n- and c-terminal unstructured tails of cpi-17 in regulating Ca2+ sensitization force of smooth muscle. J. Smooth Muscle Res. 2022, 58, 22–33. [Google Scholar] [CrossRef]
- Brautigan, D.L.; Farrington, C.; Narla, G. Targeting protein phosphatase PP2A for cancer therapy: Development of allosteric pharmaceutical agents. Clin. Sci. 2021, 135, 1545–1556. [Google Scholar] [CrossRef]
- Stevenson, A.S.; Matthew, J.D.; Eto, M.; Luo, S.; Somlyo, A.P.; Somlyo, A.V. Uncoupling of GPCR and RhoA-induced Ca2+-sensitization of chicken amnion smooth muscle lacking CPI-17. FEBS Lett. 2004, 578, 73–79. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kirkbride, J.A.; Nilsson, G.Y.; Kim, J.I.; Takeya, K.; Tanaka, Y.; Tokumitsu, H.; Suizu, F.; Eto, M. PHI-1, an Endogenous Inhibitor Protein for Protein Phosphatase-1 and a Pan-Cancer Marker, Regulates Raf-1 Proteostasis. Biomolecules 2023, 13, 1741. https://doi.org/10.3390/biom13121741
Kirkbride JA, Nilsson GY, Kim JI, Takeya K, Tanaka Y, Tokumitsu H, Suizu F, Eto M. PHI-1, an Endogenous Inhibitor Protein for Protein Phosphatase-1 and a Pan-Cancer Marker, Regulates Raf-1 Proteostasis. Biomolecules. 2023; 13(12):1741. https://doi.org/10.3390/biom13121741
Chicago/Turabian StyleKirkbride, Jason A., Garbo Young Nilsson, Jee In Kim, Kosuke Takeya, Yoshinori Tanaka, Hiroshi Tokumitsu, Futoshi Suizu, and Masumi Eto. 2023. "PHI-1, an Endogenous Inhibitor Protein for Protein Phosphatase-1 and a Pan-Cancer Marker, Regulates Raf-1 Proteostasis" Biomolecules 13, no. 12: 1741. https://doi.org/10.3390/biom13121741
APA StyleKirkbride, J. A., Nilsson, G. Y., Kim, J. I., Takeya, K., Tanaka, Y., Tokumitsu, H., Suizu, F., & Eto, M. (2023). PHI-1, an Endogenous Inhibitor Protein for Protein Phosphatase-1 and a Pan-Cancer Marker, Regulates Raf-1 Proteostasis. Biomolecules, 13(12), 1741. https://doi.org/10.3390/biom13121741