Photoelectron Angular Distributions of Nonresonant Two-Photon Atomic Ionization Near Nonlinear Cooper Minima
Abstract
:1. Introduction
2. Theoretical Background
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nikolopoulos, L.A.A.; Lambropoulos, P. Multiphoton ionization of helium under uv radiation: Role of the harmonics. Phys. Rev. A 2006, 74, 063410. [Google Scholar] [CrossRef]
- Rohringer, N.; Santra, R. X-ray nonlinear optical processes using a self-amplified spontaneous emission free-electron laser. Phys. Rev. A 2007, 76, 033416. [Google Scholar] [CrossRef]
- Florescu, V.; Budriga, O.; Bachau, H. Two-photon ionization of hydrogen and hydrogenlike ions: Retardation effects on differential and total generalized cross sections. Phys. Rev. A 2012, 86, 033413. [Google Scholar] [CrossRef]
- Lagutin, B.M.; Petrov, I.D.; Sukhorukov, V.L.; Demekhin, V.; Knie, A.; Ehresmann, A. Relativistic, correlation, and polarization effects in two-photon photoionization of Xe. Phys. Rev. A 2017, 95, 063414. [Google Scholar] [CrossRef]
- Hofbrucker, J.; Volotka, A.V.; Fritzsche, S. Maximum elliptical dichroism in atomic two-photon ionization. Phys. Rev. Lett. 2018, 121, 053401. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.-X.; Liang, H.; Xiao, X.-R.; Chen, S.-G.; Peng, L.-Y. Time-dependent perturbation theory beyond the dipole approximation for two-photon ionization of atoms. Phys. Rev. A 2019, 99, 023407. [Google Scholar] [CrossRef]
- Gryzlova, E.; Popova, M.M.; Grum-Grzhimailo, A.N.; Staroselskaya, E.I.; Douguet, N.; Bartschat, K. Coherent control of the photoelectron angular distribution in ionization of neon by a circularly polarized bichromatic field in the resonance region. Phys. Rev. A 2019, 100, 063417. [Google Scholar] [CrossRef]
- Boll, D.I.R.; Martini, L.; Fojón, O.A.; Palacios, A. Off-resonance-enhanced polarization control in two-color atomic ionization. Phys. Rev. A 2020, 101, 013428. [Google Scholar] [CrossRef]
- Venzke, J.; Jaroń-Becker, A.; Becker, A. Ionization of helium by an ultrashort extreme-ultraviolet laser pulse. J. Phys. B: At. Mol. Opt. Phys. 2020, 53, 085602. [Google Scholar] [CrossRef]
- Dodhy, A.; Compton, R.N.; Stockdale, J.A.D. Photoelectron angular distributions for near-threshold two-photon ionization of cesium and rubidium atoms. Phys. Rev. Lett. 1985, 54, 422. [Google Scholar] [CrossRef]
- Meyer, M.; Cubaynes, D.; Glijer, D.; Dardis, J.; Hayden, P.; Hough, P.; Richardson, V.; Kennedy, E.T.; Costello, J.T.; Radcliffe, P.; et al. Polarization control in two-color above-threshold ionization of atomic helium. Phys. Rev. Lett. 2008, 101, 193002. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, K.L.; Kawazura, Y.; Ueda, K. Two-photon ionization of atoms by ultrashort laser pulses. J. Mod. Opt. 2010, 57, 999. [Google Scholar] [CrossRef]
- Richardson, V.; Li, W.B.; Kelly, T.J.; Costello, J.T.; Nikolopoulos, L.A.A.; Düsterer, S.; Cubaynes, D.; Meyer, M. Dichroism in the above-threshold two-colour photoionization of singly charged neon. J. Phys. B: At. Mol. Opt. Phys. 2012, 45, 085601. [Google Scholar] [CrossRef]
- Ilchen, M.; Hartmann, G.; Gryzlova, E.V.; Achner, A.; Allaria, E.; Beckmann, A.; Braune, M.; Buck, J.; Callegari, C.; Coffee, R.N.; et al. Symmetry breakdown of electron emission in extreme ultraviolet photoionization of argon. Nat. Commun. 2018, 9, 4659. [Google Scholar] [CrossRef] [PubMed]
- Shintake, T.; Tanaka, H.; Hara, T.; Tanaka, T.; Togawa, K.; Yabashi, M.; Otake, Y.; Asano, Y.; Bizen, T.; Fukui, T.; et al. A compact free-electron laser for generating coherent radiation in the extreme ultraviolet region. Nature Photon. 2008, 2, 555. [Google Scholar] [CrossRef]
- Emma, P.; Akre, R.; Arthur, J.; Bionta, R.; Bostedt, C.; Bozek, J.; Brachmann, A.; Bucksbaum, P.; Coffee, R.; Decker, F.-J.; et al. First lasing and operation of an ångstrom-wavelength free-electron laser. Nature Photon. 2010, 4, 641. [Google Scholar] [CrossRef]
- Pabst, S. Atomic and molecular dynamics triggered by ultrashort light pulses on the atto- to picosecond time scale. Eur. Phys. J. Spec. Top. 2013, 221, 1. [Google Scholar] [CrossRef] [Green Version]
- Pellegrini, C.; Marinelli, A.; Reiche, S. The physics of X-ray free-electron lasers. Rev. Mod. Phys. 2016, 88, 015006. [Google Scholar] [CrossRef]
- Tamasaku, K.; Nagasono, M.; Iwayama, H.; Shigemasa, E.; Inubushi, Y.; Tanaka, T.; Tono, K.; Togashi, T.; Sato, T.; Katayama, T.; et al. Double core-hole creation by sequential attosecond photoionization. Phys. Rev. Lett. 2013, 111, 043001. [Google Scholar] [CrossRef]
- Tamasaku, K.; Shigemasa, E.; Inubushi, Y.; Inoue, I.; Osaka, T.; Katayama, T.; Yabashi, M.; Koide, A.; Yokoyama, T.; Ishikawa, T. Nonlinear spectroscopy with X-ray two-photon absorption in metallic copper. Phys. Rev. Lett. 2018, 121, 083901. [Google Scholar] [CrossRef]
- Lutman, A.A.; MacArthur, J.P.; Ilchen, M.; Lindahl, A.O.; Buck, J.; Coffee, R.N.; Dakovski, G.L.; Dammann, L.; Ding, Y.; Dürr, H.A.; et al. Polarization control in an X-ray free-electron laser. Nature Photon. 2016, 10, 468. [Google Scholar] [CrossRef]
- Ilchen, M.; Douguet, N.; Mazza, T.; Rafipoor, A.J.; Callegari, C.; Finetti, P.; Plekan, O.; Prince, K.C.; Demidovich, A.; Grazioli, C.; et al. Circular dichroism in multiphoton ionization of resonantly excited He+ ions. Phys. Rev. Lett. 2017, 118, 013002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richardson, V.; Costello, J.T.; Cubaynes, D.; Düsterer, S.; Feldhaus, J.; van der Hart, H.W.; Juranić, P.; Li, W.B.; Meyer, M.; Richter, M.; et al. Two-photon inner-shell ionization in the extreme ultraviolet. Phys. Rev. Lett. 2010, 105, 013001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, R.; Motomura, K.; Ishikawa, K.L.; Mondal, S.; Fukuzawa, H.; Yamada, A.; Ueda, K.; Nagaya, K.; Yase, S.; Mizoguchi, Y.; et al. Photoelectron angular distributions for the two-photon ionization of helium by ultrashort extreme ultraviolet free-electron laser pulses. J. Phys. B: At. Mol. Opt. Phys. 2013, 46, 164018. [Google Scholar] [CrossRef]
- Richter, M.; Amusia, M.Y.; Bobashev, S.V.; Feigl, T.; Juranić, P.N.; Martins, M.; Sorokin, A.A.; Tiedtke, K. Extreme ultraviolet laser excites atomic giant resonance. Phys. Rev. Lett. 2009, 102, 163002. [Google Scholar] [CrossRef] [PubMed]
- Tamasaku, K.; Shigemasa, E.; Inubushi, Y.; Katayama, T.; Sawada, K.; Yumoto, H.; Ohashi, H.; Mimura, H.; Yabashi, M.; Yamauchi, K.; et al. X-ray two-photon absorption competing against single and sequential multiphoton processes. Nature Photon. 2014, 8, 313. [Google Scholar] [CrossRef]
- Szlachetko, J.; Hoszowska, J.; Dousse, J.-C.; Nachtegaal, M.; Błachucki, W.; Kayser, Y.; Sá, J.; Messerschmidt, M.; Boutet, S.; Williams, G.J.; et al. Establishing nonlinearity thresholds with ultraintense X-ray pulses. Sci. Rep. 2016, 6, 33292. [Google Scholar] [CrossRef]
- Tyrała, K.; Milne, C.; Wojtaszek, K.; Wach, A.; Czapla-Masztafiak, J.; Kwiatek, W.M.; Kayser, Y.; Szlachetko, J. Cross-section determination for one- and two-photon absorption of cobalt at hard-X-ray energies. Phys. Rev. A 2019, 99, 052509. [Google Scholar] [CrossRef] [Green Version]
- Cooper, J.W. Photoionization from outer atomic subshells. A model study. Phys. Rev. 1962, 128, 681. [Google Scholar] [CrossRef]
- Pradhan, G.B.; Jose, J.; Deshmukh, P.C.; LaJohn, L.A.; Pratt, R.H.; Manson, S.T. Cooper minima: A window on nondipole photoionization at low energy. J. Phys. B: At. Mol. Opt. Phys. 2011, 44, 201001. [Google Scholar] [CrossRef]
- Hofbrucker, J.; Volotka, A.V.; Fritzsche, S. Fluorescence polarization as a precise tool for understanding nonsequential many-photon ionization. Phys. Rev. A 2019, 100, 011401(R). [Google Scholar] [CrossRef] [Green Version]
- Hofbrucker, J.; Volotka, A.V.; Fritzsche, S. Breakdown of the electric dipole approximation at Cooper minima in direct two-photon ionization. Sci. Rep. 2020, 10, 3617. [Google Scholar] [CrossRef] [PubMed]
- Hofbrucker, J.; Volotka, A.V.; Fritzsche, S. Relativistic calculations of the non-resonant two-photon ionization of neutral atoms. Phys. Rev. A 2016, 94, 063412. [Google Scholar] [CrossRef] [Green Version]
- Hofbrucker, J.; Volotka, A.V.; Fritzsche, S. Photoelectron distribution of nonresonant two-photon ionization of neutral atoms. Phys. Rev. A 2017, 96, 013409. [Google Scholar] [CrossRef] [Green Version]
- Fritzsche, S. A fresh computational approach to atomic structures, processes and cascades. Comput. Phys. Commun. 2019, 240, 1. [Google Scholar] [CrossRef]
- Fano, U. Propensity rules: An analytical approach. Phys. Rev. A 1985, 32, 617. [Google Scholar] [CrossRef]
- Petrov, I.D.; Lagutin, B.M.; Sukhorukov, V.L.; Novikovskiy, N.M.; Demekhin, V.; Knie, A.; Ehresmann, A. Many-electron character of two-photon above-threshold ionization of Ar. Phys. Rev. A 2019, 99, 013408. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hofbrucker, J.; Eiri, L.; Volotka, A.V.; Fritzsche, S. Photoelectron Angular Distributions of Nonresonant Two-Photon Atomic Ionization Near Nonlinear Cooper Minima. Atoms 2020, 8, 54. https://doi.org/10.3390/atoms8030054
Hofbrucker J, Eiri L, Volotka AV, Fritzsche S. Photoelectron Angular Distributions of Nonresonant Two-Photon Atomic Ionization Near Nonlinear Cooper Minima. Atoms. 2020; 8(3):54. https://doi.org/10.3390/atoms8030054
Chicago/Turabian StyleHofbrucker, Jiri, Latifeh Eiri, Andrey V. Volotka, and Stephan Fritzsche. 2020. "Photoelectron Angular Distributions of Nonresonant Two-Photon Atomic Ionization Near Nonlinear Cooper Minima" Atoms 8, no. 3: 54. https://doi.org/10.3390/atoms8030054