Next Article in Journal
13C Tracers for Glucose Degrading Pathway Discrimination in Gluconobacter oxydans 621H
Next Article in Special Issue
Sexual Dimorphism in the Response of Mercurialis annua to Stress
Previous Article in Journal
Analysis of Metabolomics Datasets with High-Performance Computing and Metabolite Atlases
Article Menu

Export Article

Open AccessArticle
Metabolites 2015, 5(3), 443-454; doi:10.3390/metabo5030443

Temperature Shift Experiments Suggest That Metabolic Impairment and Enhanced Rates of Photorespiration Decrease Organic Acid Levels in Soybean Leaflets Exposed to Supra-Optimal Growth Temperatures

Crop Systems and Global Change Laboratory, United States Department of Agriculture-Agricultural Research Service, Room 332, Bldg. 001, BARC-west 10300 Baltimore Avenue, Beltsville, MD 20705, USA
Academic Editor: Wolfgang Eisenreich
Received: 4 June 2015 / Revised: 28 July 2015 / Accepted: 30 July 2015 / Published: 5 August 2015
(This article belongs to the Special Issue Carbon Metabolism)
View Full-Text   |   Download PDF [859 KB, uploaded 5 August 2015]   |  

Abstract

Elevated growth temperatures are known to affect foliar organic acid concentrations in various plant species. In the current study, citrate, malate, malonate, fumarate and succinate decreased 40 to 80% in soybean leaflets when plants were grown continuously in controlled environment chambers at 36/28 compared to 28/20 °C. Temperature effects on the above mentioned organic acids were partially reversed three days after plants were transferred among optimal and supra-optimal growth temperatures. In addition, CO2 enrichment increased foliar malate, malonate and fumarate concentrations in the supra-optimal temperature treatment, thereby mitigating effects of high temperature on respiratory metabolism. Glycerate, which functions in the photorespiratory pathway, decreased in response to CO2 enrichment at both growth temperatures. The above findings suggested that diminished levels of organic acids in soybean leaflets upon exposure to high growth temperatures were attributable to metabolic impairment and to changes of photorespiratory flux. Leaf development rates differed among temperature and CO2 treatments, which affected foliar organic acid levels. Additionally, we report that large decreases of foliar organic acids in response to elevated growth temperatures were observed in legume species. View Full-Text
Keywords: primary metabolism; TCA cycle; photosynthetic flux; CO2 enrichment; abiotic stress; leaf development primary metabolism; TCA cycle; photosynthetic flux; CO2 enrichment; abiotic stress; leaf development
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Supplementary material

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Sicher, R.C. Temperature Shift Experiments Suggest That Metabolic Impairment and Enhanced Rates of Photorespiration Decrease Organic Acid Levels in Soybean Leaflets Exposed to Supra-Optimal Growth Temperatures. Metabolites 2015, 5, 443-454.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Metabolites EISSN 2218-1989 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top