Next Article in Journal
In Silico Study to Develop a Lectin-Like Protein from Mushroom Agaricus bisporus for Pharmaceutical Application
Previous Article in Journal
Dissolution Profile of Mefenamic Acid Solid Dosage Forms in Two Compendial and Biorelevant (FaSSIF) Media
Article Menu

Article Versions

Export Article

Open AccessArticle
Sci. Pharm. 2016, 84(1), 191-202; doi:10.3797/scipharm.ISP.2015.10

Curcumin-Loaded PLA Nanoparticles: Formulation and Physical Evaluation

1
School of Pharmacy, Bandung Institute of Technology, Ganesha 10, 40322, Bandung, Indonesia.
2
Department of Applied Chemistry and Biochemical Engineering, Graduate school of Engineering, and Green Energy Research Division, Research Institute of Green Science and Technology, Shizuoka University 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan.
*
Author to whom correspondence should be addressed.
Received: 5 September 2015 / Accepted: 15 December 2015 / Published: 14 February 2016
Download PDF [720 KB, uploaded 7 September 2016]

Abstract

Curcumin is a polyphenolic compound derived from Curcuma domestica (Zingiberaceae) that possesses diverse pharmacological effects including anti-inflammatory, antioxidant, antimicrobial, and anticarcinogenic activities. Although phase I clinical trials have shown curcumin as a safe drug even at high doses (12 g/day) in humans, poor bioavaibility largely limits its pharmacol-ogical activity. Nanoencapsulation in biodegradable polymers is a promising alternative to improve curcumin bioavaibility. In this study, curcumin was encapsulated in biodegradable polymer poly-(lactic acid) (PLA) nanoparticles via the emulsification-solvent evaporation method. Optimization of selected parameters of this method including the type of solvent, surfactant concentration, drug loading, sonication time, and centrifugation speed, were performed to obtain polymeric nano-carriers with optimum characteristics. Dichloromethane was used as the solvent and vitamin E polyethylene glycol succinate (TPGS) was used as the surfactant. Four minutes of sonication time and centrifugation at 10500 rpm were able to produce spherical nanoparticles with average size below 300 nm. The highest encapsulation efficiency was found on PLA nanoparticles containing 5% of curcumin at 89.42 ± 1.04%. The particle size, polydispersity index, zeta potential of 5% curcumin-PLA nanoparticles were 387.50 ± 58.60 nm, 0.289 ± 0.047, and −1.12 mV, respectively. Differential Scanning Calorimetry (DSC) and X-Ray Diffraction (XRD) studies showed partial interaction between the drug and polymer.
Keywords: Curcumin; poly(lactic acid); PLA; TPGS; Nanoparticle formulation Curcumin; poly(lactic acid); PLA; TPGS; Nanoparticle formulation
This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

RACHMAWATI, H.; YANDA, Y.L.; RAHMA, A.; MASE, N. Curcumin-Loaded PLA Nanoparticles: Formulation and Physical Evaluation. Sci. Pharm. 2016, 84, 191-202.

Show more citation formats Show less citations formats

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Sci. Pharm. EISSN 2218-0532 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top