Enhanced ABSF Algorithm with a Relay Function in LTE Heterogeneous Networks
Abstract
1. Introduction
2. System Model
2.1. LTE Heterogeneous Networks
2.2. ABSF in a Clustered Network
2.3. Relay Function
3. Problem Formulation
4. Proposed Algorithm
Algorithm 1 Overall Algorithm. |
|
4.1. Grouping Femto Aggressors
Algorithm 2 Collecting VMUE and Femto Aggressors. |
|
4.2. Selecting Victim UE to Assist
4.3. Relay Selection
Algorithm 3 Relay Selection for VMUE. |
|
4.4. Resource Allocation for Relay Function
4.5. Optimal Transmit Power
4.6. Deciding to Enable Relay or Not
Algorithm 4 Resource Allocation and Transmit Power for the Relay Function. |
|
5. Simulation Results and Discussion
5.1. Single Femto Base Station
5.2. Clusters of Femto Base Stations
5.3. Randomly Distributed Environment
5.4. Randomly Distributed Environment with Multiple Macro Base Stations
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ABSF | almost blank subframe |
CSG | closed-subscriber group |
eICIC | enhanced intercell interference coordination |
HetNet | heterogeneous network |
ICIC | intercell interference coordination |
LTE | Long Term Evolution |
SINR | signal-to-interference-plus-noise ratio |
UE | user equipment |
VMUE | victim macro user equipment |
References
- Cisco, C. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2016–2021 White Paper; Cisco: San Jose, CA, USA, 2017. [Google Scholar]
- Li, Q.C.; Niu, H.; Papathanassiou, A.T.; Wu, G. 5G network capacity: Key elements and technologies. IEEE Veh. Technol. Mag. 2014, 9, 71–78. [Google Scholar] [CrossRef]
- Lopez-Perez, D.; Guvenc, I.; De la Roche, G.; Kountouris, M.; Quek, T.Q.; Zhang, J. Enhanced intercell interference coordination challenges in heterogeneous networks. IEEE Wirel. Commun. 2011, 18, 22–30. [Google Scholar] [CrossRef]
- Damnjanovic, A.; Montojo, J.; Wei, Y.; Ji, T.; Luo, T.; Vajapeyam, M.; Yoo, T.; Song, O.; Malladi, D. A survey on 3GPP heterogeneous networks. IEEE Wirel. Commun. 2011, 18, 10–21. [Google Scholar] [CrossRef]
- Bhushan, N.; Li, J.; Malladi, D.; Gilmore, R.; Brenner, D.; Damnjanovic, A.; Sukhavasi, R.T.; Patel, C.; Geirhofer, S. Network densification: The dominant theme for wireless evolution into 5G. IEEE Commun. Mag. 2014, 52, 82–89. [Google Scholar] [CrossRef]
- Andrews, J.G.; Claussen, H.; Dohler, M.; Rangan, S.; Reed, M.C. Femtocells: Past, present, and future. IEEE J. Sel. Areas Commun. 2012, 30, 497–508. [Google Scholar] [CrossRef]
- Hasan, M.M.; Kwon, S.; Oh, S. Frequent-handover mitigation in ultra-dense heterogeneous networks. IEEE Trans. Veh. Technol. 2018, 68, 1035–1040. [Google Scholar] [CrossRef]
- Duong, T.M.; Kwon, S. Vertical handover analysis for randomly deployed small cells in heterogeneous networks. IEEE Trans. Wirel. Commun. 2020, 19, 2282–2292. [Google Scholar] [CrossRef]
- Hasan, M.M.; Kwon, S.; Na, J.H. Adaptive mobility load balancing algorithm for LTE small-cell networks. IEEE Trans. Wirel. Commun. 2018, 17, 2205–2217. [Google Scholar] [CrossRef]
- Saquib, N.; Hossain, E.; Kim, D.I. Fractional frequency reuse for interference management in LTE-advanced hetnets. IEEE Wirel. Commun. 2013, 20, 113–122. [Google Scholar] [CrossRef]
- Khandekar, A.; Bhushan, N.; Tingfang, J.; Vanghi, V. LTE-advanced: Heterogeneous networks. In Proceedings of the 2010 European Wireless Conference (EW), Lucca, Italy, 12–15 April 2010; IEEE: Piscataway, NI, USA, 2010; pp. 978–982. [Google Scholar]
- Barbieri, A.; Damnjanovic, A.; Ji, T.; Montojo, J.; Wei, Y.; Malladi, D.; Song, O.; Horn, G. LTE femtocells: System design and performance analysis. IEEE J. Sel. Areas Commun. 2012, 30, 586–594. [Google Scholar] [CrossRef]
- Hamza, A.S.; Khalifa, S.S.; Hamza, H.S.; Elsayed, K. A survey on inter-cell interference coordination techniques in OFDMA-based cellular networks. IEEE Commun. Surv. Tutorials 2013, 15, 1642–1670. [Google Scholar] [CrossRef]
- Deb, S.; Monogioudis, P.; Miernik, J.; Seymour, J.P. Algorithms for enhanced inter-cell interference coordination (eICIC) in LTE HetNets. IEEE/ACM Trans. Netw. 2014, 22, 137–150. [Google Scholar] [CrossRef]
- Kamel, M.I.; Elsayed, K.M. Performance evaluation of a coordinated time-domain eICIC framework based on ABSF in heterogeneous LTE-advanced networks. In Proceedings of the 2012 IEEE Global Communications Conference (GLOBECOM), Anaheim, CA, USA, 3–7 December 2012; pp. 5326–5331. [Google Scholar]
- Zhang, J.; Tian, H.; Tian, P.; Huang, Y.; Gao, L. Dynamic frequency reservation scheme for interference coordination in LTE-advanced heterogeneous networks. In Proceedings of the 2012 IEEE 75th Vehicular Technology Conference (VTC Spring), Yokohama, Japan, 6–9 May 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 1–5. [Google Scholar]
- Lembo, S.; Lunden, P.; Tirkkonen, O.; Valkealahti, K. Optimal muting ratio for enhanced inter-cell interference coordination (eICIC) in HetNets. In Proceedings of the IEE ICC, Budapest, Hungary, 9–13 June 2013; pp. 1145–1149. [Google Scholar]
- Cierny, M.; Wang, H.; Wichman, R.; Ding, Z.; Wijting, C. On number of almost blank subframes in heterogeneous cellular networks. IEEE Trans. Wirel. Commun. 2013, 12, 5061–5073. [Google Scholar] [CrossRef]
- Merwaday, A.; Mukherjee, S.; Güvenç, I. Capacity analysis of LTE-Advanced HetNets with reduced power subframes and range expansion. Eurasip J. Wirel. Commun. Netw. 2014, 2014, 189. [Google Scholar] [CrossRef]
- Nguyen, L.H.; Nguyen, M.T.; Kwon, S. Adaptive Reduced Power Subframe in LTE Heterogeneous Networks. In Proceedings of the Fall Conference Proc. of Korea Communications Society; 2018; pp. 73–74. Available online: http://www.dbpia.co.kr/Journal/articleDetail?nodeId=NODE07564999 (accessed on 18 August 2020).
- Mach, P.; Becvar, Z.; Vanek, T. In-band device-to-device communication in OFDMA cellular networks: A survey and challenges. IEEE Commun. Surv. Tutor. 2015, 17, 1885–1922. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, S.; Kato, N.; Ujikawa, H.; Suzuki, K. Device-to-device communications for enhancing quality of experience in software defined multi-tier LTE-A networks. IEEE Netw. 2015, 29, 46–52. [Google Scholar] [CrossRef]
- Liu, J.; Kawamoto, Y.; Nishiyama, H.; Kato, N.; Kadowaki, N. Device-to-device communications achieve efficient load balancing in LTE-advanced networks. IEEE Wirel. Commun. 2014, 21, 57–65. [Google Scholar] [CrossRef]
- Choi, S.K.; Kim, W.J.; Lee, H.S.; Kim, D.I. Interference forwarding for D2D based heterogeneous cellular networks. In Proceedings of the 2013 IEEE/CIC International Conference on Communications in China (ICCC), Xi’an, China, 12–14 August 2013; pp. 130–134. [Google Scholar]
- Dang, H.P.; Van Nguyen, M.S.; Do, D.T.; Pham, H.L.; Selim, B.; Kaddoum, G. Joint Relay Selection, Full-Duplex and Device-to-Device Transmission in Wireless Powered NOMA Networks. IEEE Access 2020, 8, 82442–82460. [Google Scholar] [CrossRef]
- Yeh, S.P.; Talwar, S.; Wu, G.; Himayat, N.; Johnsson, K. Capacity and coverage enhancement in heterogeneous networks. IEEE Wirel. Commun. 2011, 18, 32–38. [Google Scholar] [CrossRef]
- Vu, T.K.; Kwon, S.; Oh, S. Cooperative Interference Mitigation Algorithm in Heterogeneous Networks. IEICE Trans. Commun. 2015, 98, 2238–2247. [Google Scholar] [CrossRef]
- Jang, J.; Lee, K.B. Transmit power adaptation for multiuser OFDM systems. IEEE J. Sel. Areas Commun. 2003, 21, 171–178. [Google Scholar] [CrossRef]
- Kwon, S.; Shroff, N.B. Energy-efficient interference-based routing for multi-hop wireless networks. In Proceedings of the INFOCOM, Barcelona, Spain, 23–29 April 2006; pp. 1–12. [Google Scholar]
- Doppler, K.; Rinne, M.; Wijting, C.; Ribeiro, C.B.; Hugl, K. Device-to-device communication as an underlay to LTE-advanced networks. IEEE Commun. Mag. 2009, 47, 42–49. [Google Scholar] [CrossRef]
- Asadi, A.; Wang, Q.; Mancuso, V. A survey on device-to-device communication in cellular networks. IEEE Commun. Surv. Tutor. 2014, 16, 1801–1819. [Google Scholar] [CrossRef]
- Zulhasnine, M.; Huang, C.; Srinivasan, A. Efficient resource allocation for device-to-device communication underlaying LTE network. In Proceedings of the 2010 IEEE 6th International Conference on Wireless and Mobile Computing, Networking and Communications, Chengdu, China, 23–25 September 2010; pp. 368–375. [Google Scholar]
- Yang, T.; Zhang, L. Approaches to enhancing autonomous power control at femto under co-channel deployment of macrocell and femtocell. In Proceedings of the 2011 IEEE 22nd International Symposium on Personal, Indoor and Mobile Radio Communications, Toronto, ON, Canada, 11–14 September 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 71–75. [Google Scholar]
Notation | Meaning |
---|---|
Macro base station | |
Number of macro base stations | |
Macro UE i served by macro base station | |
Macro UE i marked as victim macro UE v | |
Macro UE chosen as relay node r for victim macro UE v | |
Affected macro UE s sharing resources with relay node r | |
Number of macro UE | |
Number of macro UE served by macro base station | |
Number of macro victim UE served by macro base station | |
Femto base station j within the coverage area of macrocell | |
Number of femto base stations | |
Set of victim UE interfered with by | |
Femto UE n served by femto base station | |
Number of femto UE |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, L.; Kwon, S. Enhanced ABSF Algorithm with a Relay Function in LTE Heterogeneous Networks. Electronics 2020, 9, 1343. https://doi.org/10.3390/electronics9091343
Nguyen L, Kwon S. Enhanced ABSF Algorithm with a Relay Function in LTE Heterogeneous Networks. Electronics. 2020; 9(9):1343. https://doi.org/10.3390/electronics9091343
Chicago/Turabian StyleNguyen, Lehung, and Sungoh Kwon. 2020. "Enhanced ABSF Algorithm with a Relay Function in LTE Heterogeneous Networks" Electronics 9, no. 9: 1343. https://doi.org/10.3390/electronics9091343
APA StyleNguyen, L., & Kwon, S. (2020). Enhanced ABSF Algorithm with a Relay Function in LTE Heterogeneous Networks. Electronics, 9(9), 1343. https://doi.org/10.3390/electronics9091343