A Survey on Reconfigurable Microstrip Filter–Antenna Integration: Recent Developments and Challenges
Abstract
:1. Introduction
2. Reconfigurable Microstrip Filters
3. Frequency-Reconfigurable Microstrip Antennas
4. Microstrip Filter–Antenna (Filtenna) Integration
5. Comparison between Switching Techniques
6. Current Challenges and Future Developments
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hussaini, A.; Abdulraheem, Y.I.; Voudouris, K.N.; Mohammed, B.A.; Abd-Alhameed, R.A.; Mohammed, H.J.; Elfergani, I.; Abdullah, A.S.; Makris, D.; Rodriguez, J.; et al. Green Flexible RF for 5G. In Fundamentals of 5G Mobile Networks, 1st ed.; Rodriguez, J., Ed.; John Wiley and Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Al-Yasir, Y.I.A.; Tu, Y.; Bakr, M.S.; Parchin, N.O.; Asharaa, A.S.; Mshwat, W.A.; Abd-Alhameed, R.A.; Noras, J.M. Design of multi-standard single/tri/quint-wideband asymmetric stepped-impedance resonator filters with adjustable TZs. IET Microw. Antennas Propag. 2019, 13, 1637–1645. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Ren, B.P.; Li, S.; Guan, X.H.; Wen, P.; Peng, X.X.Y. High-Temperature Superconducting Bandpass Filter Using Asymmetric Stepped-Impedance Resonators with Wide-Stopband Performance. IEEE Trans. Appl. Supercond. 2015, 25, 1–6. [Google Scholar]
- Al-Yasir, Y.I.A.; Tu, Y.; Parchin, N.O.; Abdulkhaleq, A.; Kosha, J.; Ullah, A.; Abd-Alhameed, R.; Noras, J. New Multi-Standard Dual-Wideband and Quad-Wideband Asymmetric Step Impedance Resonator Filters with Wide Stop Band Restriction. Int. J. RF Microw. Comput. Aided Eng. 2019, 29, 1–17. [Google Scholar] [CrossRef]
- Tu, Y.; Guo, X.R.; Wang, C.H.; Jin, J. An improved 860–960 MHz fully integrated CMOS power amplifier designation for UHF RFID transmitter. Int. J. Electron. Commun. 2013, 67, 574–577. [Google Scholar] [CrossRef]
- Ghouz, H.H.M.; Sree, M.F.A.; Ibrahim, M.A. Novel Wideband Microstrip Monopole Antenna Designs for WiFi/LTE/WiMax Devices. IEEE Access 2020, 8, 9532–9539. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, H.C.; He, P.H.; Zhang, L.P.; Cui, T.J. Design of Miniaturized Antenna Using Corrugated Microstrip. IEEE Trans. Antennas Propag. 2020, 68, 1918–1924. [Google Scholar] [CrossRef]
- Ogurtsov, S.; Koziel, S. A Conformal Circularly Polarized Series-Fed Microstrip Antenna Array Design. IEEE Trans. Antennas Propag. 2020, 68, 873–881. [Google Scholar] [CrossRef]
- Al-Yasir, Y.I.A.; Alkhafaji, M.K.; Alhamadani, H.A.; Ojaroudi Parchin, N.; Elfergani, I.; Saleh, A.L.; Rodriguez, J.; Abd-Alhameed, R.A. A New and Compact Wide-Band Microstrip Filter-Antenna Design for 2.4 GHz ISM Band and 4G Applications. Electronics 2020, 9, 1084. [Google Scholar] [CrossRef]
- Hilt, A. Availability and Fade Margin Calculations for 5G Microwave and Millimeter-Wave Anyhaul Links. Appl. Sci. 2019, 9, 5240. [Google Scholar] [CrossRef] [Green Version]
- Moghaddasi, J.; Wu, K. Multifunctional Transceiver for Future Radar Sensing and Radio Communicating Data-Fusion Platform. IEEE Access 2016, 4, 818–838. [Google Scholar] [CrossRef]
- Hong, J.-S.; Lancaster, M.J. Microstrip Filters for RF/Microwave Applications; John Wiley and Sons: Hoboken, NJ, USA, 2004; Volume 167. [Google Scholar]
- Richard, J.C.; Chandra, M.K.; Raafat, R.M. Microwave Filters for Communication Systems Fundamentals, Design, and Applications; John Wiley and Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Ian, H. Theory and Design of Microwave Filters; IET Electromagnetic Waves Series 48; IET: London, UK, 2006. [Google Scholar]
- Statement: Improving Consumer Access to Mobile Services at 3.6 GHz to 3.8 GHz. Available online: https://www.ofcom.org.uk/consultations-and-statements/category-1/future-use-at-3.6-3.8-ghz (accessed on 21 October 2018).
- Al-Yasir, Y.I.A.; Ojaroudi Parchin, N.; Abdulkhaleq, A.M.; Bakr, M.S.; Abd-Alhameed, R.A. A Survey of Differential-Fed Microstrip Bandpass Filters: Recent Techniques and Challenges. Sensors 2020, 20, 2356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, Z.; Liu, C.; Zhang, B.; Song, R.; Wu, Z.; Zhang, J.; He, D. Dual-/Tri-Wideband Bandpass Filter with High Selectivity and Adjustable Passband for 5G Mid-Band Mobile Communications. Electronics 2020, 9, 205. [Google Scholar] [CrossRef] [Green Version]
- Guan, Y.; Wu, Y.; Tentzeris, M.M. A Bidirectional Absorptive Common-Mode Filter Based on Interdigitated Microstrip Coupled Lines for 5G “Green” Communications. IEEE Access 2020, 8, 20759–20769. [Google Scholar] [CrossRef]
- Al-Yasir, Y.I.A.; Parchin, N.O.; Abdulkhaleq, A.; Hameed, K.; Al-Sadoon, M.; Abd-Alhameed, R. Design, Simulation and Implementation of Very Compact Dual-band Microstrip Bandpass Filter for 4G and 5G Applications. In Proceedings of the 16th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD), Lausanne, Switzerland, 15–18 July 2019; pp. 41–44. [Google Scholar]
- Al-Yasir, Y.I.A.; Parchin, N.O.; Alabdallah, A.; Abdulkhaleq, A.M.; Sajedin, M.; Elfergani, I.T.E.; Abd-Alhameed, R.A. Design, Simulation and Implementation of Very Compact Open-loop Trisection BPF for 5G Communications. In Proceedings of the 2019 IEEE 2nd 5G World Forum (5GWF), Dresden, Germany, 30 September–2 October 2019; pp. 189–193. [Google Scholar]
- David, M.P. Microwave Engineering; John Wiley and Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Hotopan, R.; Cos, M.; Las-Heras, F. Reduced size C-band bandpass filter with 2nd harmonic suppression. In Proceedings of the 8th European Conference on Antennas and Propagation (EuCAP), The Hague, The Netherlands, 6–11 April 2014; pp. 971–974. [Google Scholar]
- Ghatak, R.; Sarkar, P.; Mishra, R.K.; Poddar, D.R. A Compact UWB Bandpass Filter with Embedded SIR as Band Notch Structure. IEEE Microw. Wirel. Compon. Lett. 2011, 21, 261–263. [Google Scholar] [CrossRef]
- Liu, H.; Liu, T.; Zhang, Q.; Ren, B.; Wen, P. Compact Balanced Bandpass Filter Design Using Asymmetric SIR Pairs and Spoof Surface Plasmon Polariton Feeding Structure. IEEE Microw. Wirel. Compon. Lett. 2018, 28, 987–989. [Google Scholar] [CrossRef]
- Yuceer, M. A Reconfigurable Microwave Combline Filter. IEEE Trans. Circuits Syst. II Express Briefs 2016, 63, 84–88. [Google Scholar] [CrossRef]
- Cho, Y.; Baek, H.; Lee, H.; Yun, S. A Dual-Band Combline Bandpass Filter Loaded by Lumped Series Resonators. IEEE Microw. Wirel. Compon. Lett. 2009, 19, 626–628. [Google Scholar] [CrossRef]
- Velez, P.; Naqui, J.; Fernandez-Prieto, A.; Duran-Sindreu, M.; Bonache, J.; Martel, J.; Medina, F.; Martin, F. Differential Bandpass Filter With Common-Mode Suppression Based on Open Split Ring Resonators and Open Complementary Split Ring Resonators. IEEE Microw. Wirel. Compon. Lett. 2013, 23, 22–24. [Google Scholar] [CrossRef]
- Al-Yasir, Y.I.A.; Parchin, N.O.; Abdulkhaleq, A.; Abd-Alhameed, R.; Noras, J. Recent Progress in the Design of 4G/5G Reconfigurable Filters. Electronics 2019, 8, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Tang, W.; Hong, J. Varactor-Tuned Dual-Mode Bandpass Filters. IEEE Trans. Microw. Theory Tech. 2010, 58, 2213–2219. [Google Scholar] [CrossRef]
- Long, J.; Li Cui, C.; Huangfu, J.; Ran, L. A Tunable Microstrip Bandpass Filter with Two Independently Adjustable Transmission Zeros. IEEE Microw. Wirel. Compon. Lett. 2011, 21, 74–76. [Google Scholar] [CrossRef]
- Al-Yasir, Y.I.A.; Parchin, N.O.; Alabdallah, A.; Abdulkhaleq, A.M.; Abd-Alhameed, R.A.; Noras, J.M. Design of Bandpass Tunable Filter for Green Flexible RF for 5G. In Proceedings of the 2019 IEEE 2nd 5G World Forum (5GWF), Dresden, Germany, 30 September–2 October 2019. [Google Scholar]
- Ebrahimi, A.; Baum, T.; Scott, J.; Ghorbani, K. Continuously Tunable Dual-Mode Bandstop Filter. IEEE Microw. Wirel. Compon. Lett. 2018, 28, 419–421. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Wang, G.; Li, J. Microstrip Switchable and Fully Tunable Bandpass Filter with Continuous Frequency Tuning Range. IEEE Microw. Wirel. Compon. Lett. 2018, 28, 500–502. [Google Scholar] [CrossRef]
- Chen, F.; Li, R.; Chen, J. Tunable Dual-Band Bandpass-to-Bandstop Filter Using p-i-n Diodes and Varactors. IEEE Access 2018, 6, 46058–46065. [Google Scholar] [CrossRef]
- Lu, D.; Tang, X.; Barker, N.; Feng, Y. Single-Band and Switchable Dual-/Single-Band Tunable BPFs With Predefined Tuning Range, Bandwidth, and Selectivity. IEEE Microw. Wirel. Compon. Lett. 2018, 66, 1215–1227. [Google Scholar] [CrossRef]
- Al-Yasir, Y.; Parchin, N.O.; Rachman, Z.-A.S.A.; Ullah, A.; Abd-Alhameed, R. Compact tunable microstrip filter with wide-stopband restriction and wide tuning range for 4G and 5G applications. In Proceedings of the IET’s Antennas and Propagation Conference, Birmingham, UK, 11–12 November 2019; pp. 1–6. [Google Scholar]
- Iqbal, A.; Tiang, J.J.; Lee, C.K.; Mallat, N.K.; Wong, S.W. Dual-Band Half Mode Substrate Integrated Waveguide Filter With Independently Tunable Bands. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 285–289. [Google Scholar] [CrossRef]
- Bernhard, J. Reconfigurable Antennas; Morgan and Claypool: San Rafael, CA, USA, 2007. [Google Scholar]
- Abdulraheem, Y.I.; Abdullah, A.; Mohammed, H.; Abd-Alhameed, R.; Noras, J. Design of Frequency-reconfigurable Multiband Compact Antenna using two PIN diodes for WLAN/WiMAX Applications. IET Microw. Antennas Propag. 2017, 11, 1098–1105. [Google Scholar] [CrossRef] [Green Version]
- Al-Yasir, Y.; Abdullah, A.; Ojaroudi Parchin, N.; Abd-Alhameed, R.; Noras, J. A New Polarization-Reconfigurable Antenna for 5G Applications. Electronics 2018, 7, 293. [Google Scholar] [CrossRef] [Green Version]
- Al-Yasir, Y.I.A.; Abdullah, A.; Mohammed, H.; Mohammed, B.; Abd-Alhameed, R. Design of Radiation Pattern-Reconfigurable 60-GHz Antenna for 5G Applications. J. Telecommun. 2014, 27, 1–6. [Google Scholar]
- Peroulis, D.; Sarabandi, K.; Katehi, L.P.B. Design of reconfigurable slot antennas. IEEE Trans. Antennas Propag. 2005, 53, 645–654. [Google Scholar] [CrossRef] [Green Version]
- Panagamuwa, C.J.; Chauraya, A.; Vardaxoglou, J.C. Frequency and beam reconfigurable antenna using photoconducting switches. IEEE Trans. Antennas Propag. 2006, 54, 449–454. [Google Scholar] [CrossRef] [Green Version]
- Yasir, I.A.A.; Hasanain, A.H.A.; Baha, A.S.; Parchin, N.O.; Ahmed, M.A.; Abdulkareem, S.A.; Raed, A.A. New Radiation Pattern-Reconfigurable 60-GHz Antenna for 5G Communications. Available online: https://www.intechopen.com/online-first/new-radiation-pattern-reconfigurable-60-ghz-antenna-for-5g-communications (accessed on 26 September 2019).
- Yang, S.-L.S.; Kishkand, A.A.; Lee, K.-F. Frequency Reconfigurable U-Slot Microstrip Patch Antenna. IEEE Antennas Wirel. Propag. Lett. 2008, 7, 127–129. [Google Scholar] [CrossRef]
- Valkonen, R.; Luxey, C.; Holopainen, J.; Icheln, C. Frequency-reconfigurable mobile terminal antenna with MEMS switches. In Proceedings of the Fourth European Conference on Antennas and Propagation, Barcelona, Spain, 12–16 April 2010; pp. 1–5. [Google Scholar]
- Yu, Y.; Xiong, J.; Li, H.; He, S. An Electrically Small Frequency Reconfigurable Antenna with a Wide Tuning Range. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 103–106. [Google Scholar]
- Majid, H.A.; Rahim, M.K.A.; Hamid, M.R.; Ismail, M.F. A Compact Frequency-Reconfigurable Narrowband Microstrip Slot Antenna. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 616–619. [Google Scholar] [CrossRef]
- Majid, H.A.; Rahim, M.K.A.; Hamid, M.R.; Murad, N.A.; Ismail, M.F. Frequency-Reconfigurable Microstrip Patch-Slot Antenna. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 218–220. [Google Scholar] [CrossRef]
- Jin, G.; Deng, C.; Xu, Y.; Yang, J.; Liao, S. Differential Frequency-Reconfigurable Antenna Based on Dipoles for Sub-6 GHz 5G and WLAN Applications. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 472–476. [Google Scholar] [CrossRef]
- Al-Yasir, Y.I.A.; Parchin, N.O.; Elfergani, I.; Abd-Alhameed, R.A.; Noras, J.M.; Rodriguez, J.; Al-jzari, A.; Hammed, W.I. A New Polarization-Reconfigurable Antenna for 5G Wireless Communications. In Broadband Communications, Networks, and Systems. BROADNETS 2018. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering; Sucasas, V., Mantas, G., Althunibat, S., Eds.; Springer: Cham, Germany, 2019; Volume 263. [Google Scholar]
- Al-Yasir, Y.I.A.A.; JaroudiParchin, N.O.; Alabdullah, A.; Mshwat, W.; Ullah, A.; Abd-Alhameed, R. New Pattern Reconfigurable Circular Disk Antenna Using Two PIN Diodes for WiMax/WiFi (IEEE 802.11 a) Applications. In Proceedings of the 2019 16th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD), Lausanne, Switzerland, 15–18 July 2019; pp. 53–56. [Google Scholar]
- Khan, A.; Nema, R. Analysis of five different dielectric substrates on microstrip patch antenna. Int. J. Comput. Appl. 2012, 55, 44–47. [Google Scholar] [CrossRef]
- Chuang, C.-T.; Chung, S.-J. A new compact filtering antenna using defected ground resonator. In 2010 Asia-Pacific Microwave Conference (APMC); IEEE: Piscataway Township, NJ, USA, 2010; pp. 1003–1006. [Google Scholar]
- Coonrod, J. Choosing Circuit Materials for Millimeter-Wave Applications. High Freq. Electron. 2013, 1, 22–30. [Google Scholar]
- Cui, J.; Zhang, A.; Yan, S. Co-design of a filtering antenna based on multilayer structure. Int. J. RF Microw. Comput. Aided Eng. 2020, 30, e22096. [Google Scholar] [CrossRef]
- Hua, C.; Liu, M.; Lu, Y. Planar integrated substrate integrated waveguide circularly polarized filtering antenna. Int. J. RF Microw. Comput. Aided Eng 2019, 29, e21517. [Google Scholar] [CrossRef]
- Niu, B.-J.; Tan, J.-H. Dipole filtering antenna with quasi-elliptic peak gain response using parasitic elements. Microw. Opt. Technol. Lett. 2019, 61, 1612–1616. [Google Scholar] [CrossRef]
- Park, J.; Jeong, M.; Hussain, N.; Rhee, S.; Park, S.; Kim, N. A low-profile high-gain filtering antenna for fifth generation systems based on nonuniform metasurface. Microw. Opt. Technol. Lett. 2019, 61, 2513–2519. [Google Scholar] [CrossRef]
- Al-Yasir, Y.I.A.; Parchin, N.O.; Abd-Alhameed, R.A. A Differential-Fed Dual-Polarized High-Gain Filtering Antenna Based on SIW Technology for 5G Applications. In Proceedings of the 14th European Conference on Antennas and Propagation (EuCAP), Copenhagen, Denmark, 15–20 March 2020; pp. 1–5. [Google Scholar]
- Song, L.; Wu, B.; Xu, M.; Su, T.; Lin, L. Wideband balun filtering quasi-Yagi antenna with high selectivity. Microw. Opt. Technol. Lett. 2019, 61, 2336–2341. [Google Scholar] [CrossRef]
- Wu, W.; Fan, R.; Wang, J.; Zhang, Q. A broadband low profile microstrip filter-antenna with an omni-directional pattern. In Proceedings of the 2014 3rd Asia-Pacific Conference on Antennas and Propagation, Harbin, China, 26–29 July 2014; pp. 580–582. [Google Scholar]
- Lin, C.; Chung, S. A Compact Filtering Microstrip Antenna with Quasi-Elliptic Broadside Antenna Gain Response. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 381–384. [Google Scholar]
- Wu, W.; Ma, B.; Wang, J.; Wang, C. Design of a microstrip antenna with filtering characteristics for wireless communication systems. In Proceedings of the 2017 Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP), Xi’an, China, 16–19 October 2017; pp. 1–3. [Google Scholar]
- Al-Yasir, Y.I.A.; Parchin, N.O.; Abd-Alhameed, R.A. New High-Gain Differential-Fed Dual-Polarized Filtering Microstrip Antenna for 5G Applications. In Proceedings of the 14th European Conference on Antennas and Propagation (EuCAP), Copenhagen, Denmark, 15–20 March 2020; pp. 1–5. [Google Scholar]
- Wu, W.; Yin, Y.; Zuo, S.; Zhang, Z.; Xie, J. A New Compact Filter-Antenna for Modern Wireless Communication Systems. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 1131–1134. [Google Scholar]
- Ohira, M.; Ma, Z. An efficient design method of microstrip filtering antenna suitable for circuit synthesis theory of microwave band-pass filters. In Proceedings of the 2015 International Symposium on Antennas and Propagation (ISAP), Hobart, Australia, 9–12 November 2015; pp. 1–4. [Google Scholar]
- Al-Yasir, Y.I.A.; Alhamadani, H.A.; Kadhim, A.S.; Ojaroudi Parchin, N.; Saleh, A.L.; Elfergani, I.T.E.; Rodriguez, J.; Abd-Alhameed, R.A. Design of a Wide-Band Microstrip Filtering Antenna with Modified Shaped Slots and SIR Structure. Inventions 2020, 5, 11. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Jabbar, H.; Kadhim, A.S.; Saleh, A.L.; Al-Yasir, Y.I.A.; Parchin, N.O.; Abd-Alhameed, R.A. Design and optimization of microstrip filtering antenna with modified shaped slots and SIR filter to improve the impedance bandwidth. TELKOMNIKA 2020, 18, 515–545. [Google Scholar] [CrossRef]
- Mohammed, K.A.; Alhamadani, A.; Al-Yasir, Y.I.A.; Saleh, A.L.; Parchin, N.O.; Abd-Alhameed, R. Study on the effect of the substrate material type and thickness on the performance of the filtering antenna design. TELKOMNIKA 2020, 18, 72–79. [Google Scholar]
- Yang, D.; Zhai, H.; Guo, C.; Li, H. A Compact Single-Layer Wideband Microstrip Antenna with Filtering Performance. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 801–805. [Google Scholar] [CrossRef]
- Tawk, Y.; Costantine, J.; Christodoulou, C.G. A varactor-based reconfigurable filtenna, IEEE Antennas Wirel. Propag. Lett. 2012, 11, 716–719. [Google Scholar]
- Soltanpour, M.; Fakharian, M.M. Compact filtering slot antenna with frequency agility for Wi-Fi/LTE mobile applications. Electron. Lett. 2016, 52, 491–492. [Google Scholar] [CrossRef]
- Augustin, G.; Chacko, B.P.; Denidni, T.A. Electronically reconfigurable uni-planar antenna for cognitive radio applications. Microw. Antennas Propag. 2014, 8, 367–376. [Google Scholar] [CrossRef]
- Deng, J.; Hou, S.; Zhao, L.; Guo, L. Wideband-to-narrowband tunable monopole antenna with integrated band-pass filters for UWB/WLAN applications. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2734–2737. [Google Scholar] [CrossRef]
- Kingsly, S.; Thangarasu, D.; Alsath, M.G.N.; Thipparaju, R.R.; Palaniswamy, S.K.; Sambandam, P. Multiband Reconfigurable Filtering Monopole Antenna for Cognitive Radio Applications. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1416–1420. [Google Scholar] [CrossRef]
- Hu, P.F.; Pan, Y.M.; Zhang, X.Y.; Hu, B. A Filtering Patch Antenna with Reconfigurable Frequency and Bandwidth Using F-Shaped Probe. IEEE Trans. Antennas Propag. 2019, 67, 121–130. [Google Scholar] [CrossRef]
- Rodrigues, L.; Varum, T.; Matos, J.N. The Application of Reconfigurable Filtennas in Mobile Satellite Terminals. IEEE Access 2020, 8, 77179–77187. [Google Scholar] [CrossRef]
- Mahmoud, K.R.; Montaser, A.M. Design of Compact mm-wave Tunable Filtenna Using Capacitor Loaded Trapezoid Slots in Ground Plane for 5G Router Applications. IEEE Access 2020, 8, 27715–27723. [Google Scholar] [CrossRef]
- Bi, X.; Zhang, X.; Wong, S.; Guo, S.; Yuan, T. Design of Notched-Wideband Bandpass Filters with Reconfigurable Bandwidth Based on Terminated Cross-Shaped Resonators. IEEE Access 2020, 8, 37416–37427. [Google Scholar] [CrossRef]
- Qin, P.-Y.; Wei, F.; Guo, Y.J. A wideband-to-narrowband tunable antenna using a reconfigurable filter. IEEE Trans. Antennas Propag. 2015, 63, 2282–2285. [Google Scholar] [CrossRef]
- Tang, M.-C.; Wen, Z.; Wang, H.; Li, M.; Ziolkowski, R.W. Compact, frequency-reconfigurable filtenna with sharply defined wideband and continuously tunable narrowband states. IEEE Trans. Antennas Propag. 2017, 65, 5026–5034. [Google Scholar] [CrossRef] [Green Version]
- Horestani, A.K.; Shaterian, Z.; Naqui, J.; Martín, F.; Fumeaux, C. Reconfigurable and tunable S-shaped split-ring resonators and application in band-notched UWB antennas. IEEE Trans. Antennas Propag. 2016, 64, 3766–3776. [Google Scholar] [CrossRef]
- Malakooti, S.-A.; Mousavi, S.M.H.; Fumeaux, C. Tunable bandpassto-bandstop quasi-Yagi–Uda antenna with sum and difference radiation patterns. IEEE Trans. Antennas Propag. 2019, 67, 2260–2271. [Google Scholar] [CrossRef]
- Yang, X.; Lin, H.; Gu, H.; Ge, L.; Zeng, X. Broadband pattern diversity patch antenna with switchable feeding network. IEEE Access 2018, 6, 69612–69619. [Google Scholar] [CrossRef]
- Yassin, M.E.; Mohamed, H.A.; Abdallah, E.A.F.; El-Hennawy, H.S. Circularly Polarized Wideband-to-Narrowband Switchable Antenna. IEEE Access 2019, 7, 36010–36018. [Google Scholar] [CrossRef]
- Alhegazi, A.; Zakaria, Z.; Shairi, N.; Salleh, A.; Qasem, S. Review of Recent Developments in Filtering-Antennas. Int. J. Commun. Antenna Propag. (IRECAP) 2016, 6, 125–131. [Google Scholar] [CrossRef]
- Ahmed, S.; Geok, T.; Alias, M.; Kamaruddin, M. A Survey on Recent Developments in Filtering Antenna Technology. Int. J. Commun. Antenna Propag. (IRECAP) 2018, 8, 374–384. [Google Scholar] [CrossRef]
- Sam, W.Y.; Zakaria, Z. A Review on Reconfigurable Integrated Filter and Antenna. Prog. Electromagn. Res. B 2015, 63, 263–273. [Google Scholar] [CrossRef] [Green Version]
- Rohde, U.L.; Newkirk, D.P. RF/Microwave Circuit Design for Wireless Applications; Wiley: New York, NY, USA, 2000. [Google Scholar]
- Cetiner, B.A.; Crusats, G.R.; Jofre, L.; Biyikli, N. RF MEMS integrated frequency reconfigurable annular slot antenna. IEEE Trans. Antennas Propag. 2010, 58, 626–632. [Google Scholar] [CrossRef]
- Chen, R.-H.; Row, J.-S. Sing-fed microstrip patch antenna with switchable polarization. IEEE Trans. Antennas Propag. 2008, 56, 922–926. [Google Scholar] [CrossRef]
- Behdad, N.; Sarabandi, K. A varactor-tuned dual-band slot antenna. IEEE Trans. Antennas Propag. 2006, 54, 401–408. [Google Scholar] [CrossRef] [Green Version]
- Al-Yasir, Y.; Abd-Alhameed, R.A.; Noras, J.M.; Abdulkhaleq, A.M.; Ojaroudi, N. Design of Very Compact Combline Band-Pass Filter for 5G Applications. In Proceedings of the Loughborough Antennas & Propagation Conference (LAPC), Loughborough, UK, 12–13 November 2018; pp. 1–4. [Google Scholar]
- Zhao, D.; Lan, L.; Han, Y.; Liang, F.; Zhang, Q.; Wang, B.Z. Optically controlled reconfigurable band-notched UWB antenna for cognitive radio applications. IEEE Photon. Technol. Lett. 2014, 26, 2173–2176. [Google Scholar] [CrossRef]
- Parchin, N.O.; Al-Yasir, Y.I.A.; Abd-Alhameed, R.A. Microwave/RF Components for 5G Front-End Systems; AVID SCIENCE: Telangana, India, 2020. [Google Scholar]
- Chen, Z.; Wong, H.; Kelly, J. A polarization-reconfigurable glass dielectric resonator antenna using liquid metal. IEEE Trans. Antennas Propag. 2019, 67, 3427–3432. [Google Scholar] [CrossRef]
- Al-Yasir, Y.I.A.; Tu, Y.; Parchin, N.O.; Elfergani, I.; Abd-Alhameed, R.; Rodriguez, J.; Noras, J. Mixed-coupling multi-function quint-wideband asymmetric stepped impedance resonator filter. Microw. Opt. Tech. Lett. 2019, 61, 1181–1184. [Google Scholar] [CrossRef]
- Zheng, S.H.; Liu, X.; Tentzeris, M.M. Optically controlled reconfigurable band-notched UWB antenna for cognitive radio systems. Electron. Lett. 2014, 50, 1502–1504. [Google Scholar] [CrossRef] [Green Version]
- Ullah, U.; Koziel, S.; Mabrouk, I.B. Rapid Redesign and Bandwidth/Size Tradeoffs for Compact Wideband Circular Polarization Antennas Using Inverse Surrogates and Fast EM-Based Parameter Tuning. IEEE Trans. Antennas Propag. 2020, 68, 81–89. [Google Scholar] [CrossRef]
- Row, J.; Kuo, L. Pattern-Reconfigurable Array Based on a Circularly Polarized Antenna with Broadband Operation and High Front-to-Back Ratio. IEEE Trans. Antennas Propag. 2020, 68, 4109–4113. [Google Scholar] [CrossRef]
- Wu, Z.; Tang, M.; Li, M.; Ziolkowski, R.W. Ultralow-Profile, Electrically Small, Pattern-Reconfigurable Metamaterial-Inspired Huygens Dipole Antenna. IEEE Trans. Antennas Propag. 2020, 68, 1238–1248. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, Z.; Tang, Z.; Yin, Y. Differentially Fed, Dual-Band Dual-Polarized Filtering Antenna with High Selectivity for 5G Sub-6 GHz Base Station Applications. IEEE Trans. Antennas Propag. 2020, 68, 3231–3236. [Google Scholar] [CrossRef]
- Hao, Z.; Hong, J. Quasi-Elliptic UWB Bandpass Filter Using Multilayer Liquid Crystal Polymer Technology. IEEE Microw. Wirel. Compon. Lett. 2010, 20, 202–204. [Google Scholar] [CrossRef]
- Zhou, P.; Li, B.; Lu, H.; Shi, Y.; Tang, W. Novel Ultrawideband and Multimode LTCC Common-Mode Filter Based on the Dual Vertical Coupling Paths. IEEE Trans. Compon. Packag. Manuf. Technol. 2019, 9, 1345–1353. [Google Scholar] [CrossRef]
- Shen, G.; Che, W. Compact Ku-band LTCC bandpass filter using folded dual-composite right- and left-handed resonators. Electron. Lett. 2020, 56, 17–19. [Google Scholar] [CrossRef]
- Shen, Z.; Xu, K.; Shi, J. Compact single-layer bandwidth-enhanced balanced bandpass filter using half-mode substrate-integrated waveguide. Electron. Lett. 2019, 55, 697–699. [Google Scholar] [CrossRef]
- Sans, M.; Selga, J.; Vélez, P.; Bonache, J.; Martín, F.; Rodríguez, A.; Boria, V.E. Optimized wideband differential-mode bandpass filters with broad stopband and common-mode suppression based on multi-section stepped impedance resonators and interdigital capacitors. In Proceedings of the IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO), Seville, Spain, 17–19 May 2017; pp. 10–12. [Google Scholar]
- Jamshidi, M.; Lalbakhsh, A.; Lotfi, S.; Siahkamari, H.; Mohamadzade, B.; Jalilian, J. A neuro-based approach to designing a Wilkinson power divider. Int. J. RF Microw. Comput. Aided Eng. 2020, 30, 1–10. [Google Scholar] [CrossRef]
- Mohammed, H.J.; Abdulsalam, F.; Abdulla, A.S.; Ali, R.S.; Abd-Alhameed, R.A.; Noras, J.M.; Abdulraheem, Y.I.; Ali, A.; Rodriguez, J.; Abdalla, A.M. Evaluation of genetic algorithms, particle swarm optimisation, and firefly algorithms in antenna design. In Proceedings of the 13th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD), Lisbon, Portugal, 27–30 June 2016; pp. 1–4. [Google Scholar]
- Mohammed, H.J.; Abdullah, A.S.; Ali, R.S.; Abd-Alhameed, R.A.; Abdulraheem, Y.I.; Noras, J.M. Design of a uniplanar printed triple band-rejected ultra-wideband antenna using particle swarm optimisation and the firefly algorithm. IET Microw. Antennas Propag. 2016, 10, 31–37. [Google Scholar] [CrossRef] [Green Version]
Ref. | Year | Topology | Tuning Range (GHz) | BW (MHz) | No. of Switches | IL * (dB) | Filter Size (mm3) | Challenges/ Limitations |
---|---|---|---|---|---|---|---|---|
[29] | 2010 | Dual-Mode | 0.6–1.0 | 85–95 | 3 | 2.2 | 30 × 23 × 1.27 | Low tuning range |
[30] | 2011 | Coupled lines | 1.5–2.0 | 110 | 4 | 4 | 36 × 30 × 0.80 | High loss |
[32] | 2018 | Dual-Mode | 0.66–0.99 | 108 | 4 | 0.75 | 72 × 70 × 1.6 | Low tuning range |
[33] | 2018 | Ring-resonator | 1.1–2.1 | 40 | 7 | 6 | 52 × 12 × 1.6 | Number of switches |
[34] | 2018 | Dual-Mode | 1.7–2.9 | 40 | 7 | 4 | 36 × 35 × 0.8 | Number of switches |
[35] | 2018 | Multimode | 0.76–2 | 75–150 | 2 | 1.2 | 100 × 8 × 0.50 | Size |
[36] | 2019 | Coupled lines | 2.5–3.8 | 95–115 | 2 | 0.8 | 13 × 8 × 0.80 | Constant bandwidth |
Ref. | Year | Topology | Antenna Size(mm3) | Tuning Range (GHz) | Type of Switches/DC Bias (V) | No. of Switches | No. of Achieved Bands | Constant Radiation Patterns (Challenges/ Limitations) |
---|---|---|---|---|---|---|---|---|
[45] | 2008 | U-Slot | 150 × 150 × 1.6 | 2.6–3.35 | Varactor (10.8–1.5) | 1 | 6 | No |
[46] | 2010 | Inverted F | 40 × 98 × 5 | 0.920–1.8 | RF-MEMS (0.5–0.9) | 1 | 2 | No |
[47] | 2011 | Capacitive loaded loop | 200 × 200 × 0.5 | 0.45–0.89 | Varactor (0.6–1.2) | 3 | 5 | No |
[48] | 2012 | Patch slot | 50 × 46 × 1.6 | 2.2–4.75 | PIN Diode (0.9) | 5 | 6 | No |
[49] | 2013 | Patch slot | 50 × 50 × 3.04 | 1.98–3.59 | PIN Diode (1.2) | 5 | 9 | No |
[50] | 2020 | Differentially fed | 50 × 50 × 0.81 | 2.9–6.2 | PIN Diode (0.8) | 4 | 2 | Yes |
Ref. | Year | Topology | f0 (GHz) | FBW (%) | Size (λ0 × λ0) | RL (dB) | Gain (dBi) | Extra Structure (Challenges/Limitations) |
---|---|---|---|---|---|---|---|---|
[56] | 2020 | Coupled lines | 2.6 | 2.6 | 0.31 × 0.27 | > 13 | 2.2 | Multilayer |
[57] | 2019 | SIW | 11.65 | 4 | 2 × 1.1 | > 14 | 5.6 | SIW |
[58] | 2019 | Quasi-elliptic | 1.85 | 5.4 | 0.74 × 0.74 | > 12 | 6.2 | Multilayer |
[59] | 2019 | Patch slot | 3.6 | 15 | 0.92 × 0.86 | > 14 | 10 | Metasurface |
[61] | 2016 | Quasi-Yagi | 2.5 | 22.8 | 1.7 × 1.3 | > 20 | 5 | balun |
[62] | 2014 | Ring slot | 2.5 | 15 | 0.76 × 0.76 | > 15 | 2 | Multilayer |
[63] | 2011 | Quasi-elliptic | 5 | 2 | 0.90 × 0.90 | > 15 | 4 | None |
[64] | 2017 | Open-loop | 2.45 | 6.4 | 0.72 × 0.70 | > 15 | 6 | None |
[66] | 2011 | Coupled lines | 2.5 | 16.3 | 0.70 × 0.70 | > 20 | 2.4 | None |
[67] | 2015 | Ring slot | 2.5 | 8 | 0.75 × 0.75 | > 14 | 4.5 | None |
[71] | 2020 | Coupled lines | 2.4 | 20.1 | 0.60 × 0.60 | > 16 | 9.5 | None |
Ref. | Year | Topology | Switches Number/Type | Size (mm) | Frequency Range (GHz) | Gain (dBi) | Advantages/Challenges/ Limitations |
---|---|---|---|---|---|---|---|
[72] | 2012 | Hexagonal slot | 1/Varactor | 30 × 59 | 6.2–6.5 | 5.7–6.7 | Band-limited control |
[73] | 2016 | E-shaped patch | 2/PIN diodes | 36 × 14 | 2.1, 2.4 | - | Dual-band only |
[74] | 2014 | Slot resonator | 2/PIN diodes | 103 × 120 | 1.6–6 | 2.3 | Large size |
[75] | 2017 | Open-loop resonator | 5/PIN diodes | 40 × 45 | 2.2–11 | 2.1–2.3 | Needs more diodes |
[77] | 2019 | 4 Distinct resonators | 4/PIN diodes | 30 × 60 | 1.8–5.2 | 1.1–3.4 | Compact, discrete tuning |
Ref. | Year | Topology | Size λ0 | Number of Switches | Frequency Range (GHz) | Gain (dBi) | Pattern Reconfiguration (Challenges/ Limitations) | Advantages |
---|---|---|---|---|---|---|---|---|
[81] | 2015 | Ring slot | 0.7 × 0.3 × 0.1 | 1 PIN Diodes + 2 varactors | 3.7–4.7 | 3 | No | Wideband, tunable bandpass |
[82] | 2017 | Coupled lines | 0.4 × 0.2 × 0.01 | 2 PIN diodes | 3–4.5 | 3.6 | No | Wideband, tunable bandpass |
[83] | 2016 | S-shaped split-ring | 0.4 × 0.3 × 0.002 | 2 PIN diodes | 3.1–3.8 | 1–2 | No | Tunable bandpass, tunable bandstop |
[84] | 2019 | Quasi-Yagi–Uda | 0.7 × 0.7 × 0.008 | 2 PIN Diodes + 4 varactors | 3.4–5.4 | 5–9 | No | Tunable bandpass, tunable bandstop |
[85] | 2018 | Coupled lines | 1.2 × 1.2 × 0.17 | 4 PIN diodes | 1.7–3.7 | 8–10 | Yes | Wideband |
[86] | 2019 | Coupled lines | 1.2 × 1.6 × 0.007 | 4 PIN diodes | 2.5–6.5 | 4.8 | Yes | Wideband, tunable bandpass, tunable bandstop |
Properties | PIN Diode | Varactor | RF MEMS | Photoconductive |
---|---|---|---|---|
Speed (µsec) | 1–100 × 10−6 | 0.1 | 1–200 | 3–9 |
Quality factor | 50–85 | 25–55 | 86–165 | - |
Voltage (V) | 3–5 | 0.1–15 | 20–100 | 1.8–1.9 |
Current (mA) | 3–20 | 1–25 | 0 | 0–87 |
Power (mW) | 5–100 | 10–200 | 0.05-0.1 | 0–50 |
Temperature sensitivity | Medium | High | Low | Low |
Cost | Low | Low | Medium | High |
Loss at 1 GHz (dB) | 0.3–1.2 | 0.5–3 | 0.05–0.2 | 0.5–1.5 |
Fabrication complexity | Commercially available | Commercially available | Low fabrication complexity | Complex |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tu, Y.; Al-Yasir, Y.I.A.; Ojaroudi Parchin, N.; Abdulkhaleq, A.M.; Abd-Alhameed, R.A. A Survey on Reconfigurable Microstrip Filter–Antenna Integration: Recent Developments and Challenges. Electronics 2020, 9, 1249. https://doi.org/10.3390/electronics9081249
Tu Y, Al-Yasir YIA, Ojaroudi Parchin N, Abdulkhaleq AM, Abd-Alhameed RA. A Survey on Reconfigurable Microstrip Filter–Antenna Integration: Recent Developments and Challenges. Electronics. 2020; 9(8):1249. https://doi.org/10.3390/electronics9081249
Chicago/Turabian StyleTu, Yuxiang, Yasir I. A. Al-Yasir, Naser Ojaroudi Parchin, Ahmed M. Abdulkhaleq, and Raed A. Abd-Alhameed. 2020. "A Survey on Reconfigurable Microstrip Filter–Antenna Integration: Recent Developments and Challenges" Electronics 9, no. 8: 1249. https://doi.org/10.3390/electronics9081249