The Future of Low-End Motes in the Internet of Things: A Prospective Paper
Abstract
:1. Introduction
2. IoT Edge: Trends and Challenges
2.1. IoT-T&C #1: Connectivity and Interoperability Basis
2.2. IoT-T&C #2: Intelligence at the Edge
2.3. IoT-T&C #3: Security Is a Paramount
- Confidentiality aims at preventing sensitive data from reaching unauthorized individuals or devices. This is commonly achieved by defining different access levels for the desired asset (user/password), strong data encryption mechanisms, biometric verification, security tokens, two-factor authentication, and much more [49].
- Availability of resources is one of the IoT security pillars and it can be ensured by a rigorous hardware maintenance and secure hardware/software resources. Extra security measures such as software firewalls and intrusion detection systems can be used in order to avoid malicious actions such as denial-of-service (DoS) attacks.
- Authentication/Access Control mechanisms are a fundamental help in ensuring secure communications between all parties [53,54]. Managing access control constitutes the first critical defense against intrusions. Such mechanisms are highly necessary to (i) uniquely identify objects and manage their identities (i.e., identification), (ii) establish a mutual trust-link between different objects, users, or systems by verifying and differentiating their identities (i.e., authentication), and (iii) grant, deny or limit the rights and privileges of entities to access data, resources or applications (i.e., authorization) [49,53].
- Accountability means the ability to report back to users how their data is being managed, what modifications have been made, when those modifications occur and who is their author [56]. This parameter recalls for tracking mechanisms able to trace any type of action in the information system with the identity of the individual [48].
- Foundation Functions layer combines fundamental modules that support the outside layers, consisting in cryptographic algorithms/engines, supported by true random number generator (TRNG) modules [59]. From the set of cryptographic algorithms available, stands out the (i) Advanced Encryption Standard (AES) symmetric key protocol for bulk data encryption, (ii) Secure Hash Algorithm (SHA) cryptographic functions, and (iii) Elliptic Curve Cryptography (ECC) or RSA asymetric key algorithms for authentication and secure transaction of session keys. To support these cryptographic algorithms, this layer comprises a mechanism that delivers a unique device identity, which is bound to the silicon (root key) [59]. A root key is typically stored in one time programmable memory, programmed during the platform manufacturing, or in physically unclonable function (PUF) mechanisms. It provides a robust mean to encrypt more keys and data.
- Platform Security layer concerns a system-wide security approach to the platform itself, including access control to peripherals and memories. For this purpose, Memory Protection Units (MPU) are normally used [59]. Neverthless, ARM has recently brought its TrustZone technology, previously exclusive to their microprocessors (Cortex-A), to the microcontroller level (Cortex-M). This technology allows the isolation of applications that control sensitive peripherals or memory zones from the operating system and other hardware modules of the platform. Arm TrustZone-M [60,61,62] promotes the hardware as the initial root of trust and typically enables any resource of the system (e.g., processor, memory, peripherals) to be trusted. The Platform Security layer is also responsible for ensuring the integrity and authenticity of the software being executed within the IoT device. In this regard, secure boot is the key-technology [59].
- Advanced Protection layer includes a set of technologies to protect especially against physical tamper attacks, which may compromise the confidentiality, integrity or availability of the system. In this sense, this layer encompasses technologies to prevent against: (i) illegitimate access to code IP, data or keys (confidentiality), (ii) illegal modifications of the code, data or keys stored in the device to gain control over the system (integrity), and methods to disrupt normal operation of the system, making it unavailable or operating in safe-mode (availability) [59]. Physical tamper attacks can be classified as invasive attacks or noninvasive, whether they include or not physical intrusion or damage to the device package, respectively [63]. If the detection of invasive attacks can be easily performed by an on/off switch connected to the GPIO pins of a processing system, the detection of noninvasive attacks is far more expensive.
2.4. IoT-T&C #4: Growing Energy Awareness
3. The Role of Reconfigurable Platforms
3.1. REC-T&C #1 (Connectivity and Interoperability)
3.2. REC-T&C #2 (Intelligence)
3.3. REC-T&C #3 (Security)
3.4. REC-T&C #4 (Energy)
4. Reconfigurable Platforms and IoT Motes: Putting It All Together
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hassan, Q.F. Introduction to the Internet of Things. In Internet of Things A to Z: Technologies and Applications; IEEE: New York, NY, USA, 2018; Chapter 1. [Google Scholar] [CrossRef]
- Atzori, L.; Iera, A.; Morabito, G. The Internet of Things: A survey. Comput. Netw. 2010, 54, 2787–2805. [Google Scholar] [CrossRef]
- Omale, G. Gartner Identifies Top 10 Strategic IoT Technologies and Trends; Technical Report; Gartner: Stamford, CT, USA, 2018. [Google Scholar]
- Arm. IoT and the Data Gold Rush; Technical Report; ARM: Cambridge, UK, 2018. [Google Scholar]
- Sparks, P. The Route to a Trillion Devices—The Outlook for IoT Investment to 2035; Technical Report; ARM: Cambridge, UK, 2017. [Google Scholar]
- Pradilla, J.; Palau, C. IoT: Principles and Paradigms. In Internet of Things: Principles and Paradigms; Elsevier: Amsterdam, The Netherlands, 2016; pp. 125–142. [Google Scholar]
- Ray, P. A survey on Internet of Things architectures. J. King Saud Univ. Comput. Inform. Sci. 2018, 30, 291–319. [Google Scholar]
- Lin, J.; Yu, W.; Zhang, N.; Yang, X.; Zhang, H.; Zhao, W. A Survey on Internet of Things: Architecture, Enabling Technologies, Security and Privacy, and Applications. IEEE Internet Things J. 2017, 4, 1125–1142. [Google Scholar] [CrossRef]
- Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M. Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications. IEEE Commun. Surv. Tutor. 2015, 17, 2347–2376. [Google Scholar] [CrossRef]
- Raza, M.; Aslam, N.; Le-Minh, H.; Hussain, S.; Cao, Y.; Khan, N.M. A Critical Analysis of Research Potential, Challenges and Future Directives in Industrial Wireless Sensor Networks. IEEE Commun. Surv. Tutor. 2018, 20, 39–95. [Google Scholar] [CrossRef]
- Rodríguez-Andina, J.J.; Valdés-Peña, M.D.; Moure, M.J. Advanced Features and Industrial Applications of FPGAs: A Review. IEEE Trans. Ind. Inform. 2015, 11, 853–864. [Google Scholar] [CrossRef]
- Palattella, M.R.; Accettura, N.; Vilajosana, X.; Watteyne, T.; Grieco, L.A.; Boggia, G.; Dohler, M. Standardized Protocol Stack for the Internet of (Important) Things. IEEE Commun. Surv. Tutor. 2013, 15, 1389–1406. [Google Scholar] [CrossRef] [Green Version]
- Sheng, Z.; Yang, S.; Yu, Y.; Vasilakos, A.V.; Mccann, J.A.; Leung, K.K. A survey on the IETF protocol suite for the internet of things: Standards, challenges, and opportunities. IEEE Wirel. Commun. 2013, 20, 91–98. [Google Scholar] [CrossRef]
- Morales, M. Embedded Artificial Intelligence: Reconfigurable Processing Accelerates AI in Endpoint Systems for the OT Market; Technical Report; Renesas: Tokyo, Japan, 2018. [Google Scholar]
- Lai, L.; Suda, N.; Chandra, V. CMSIS-NN: Efficient Neural Network Kernels for Arm Cortex-M CPUs. arXiv 2018, arXiv:1801.06601. [Google Scholar]
- Alaba, F.A.; Othman, M.; Hashem, I.A.T.; Alotaibi, F. Internet of Things security: A survey. J. Netw. Comput. Appl. 2017, 88, 10–28. [Google Scholar] [CrossRef]
- Pinto, S.; Garlati, C. User Mode Interrupts—A Must for Securing Embedded Systems. In Proceedings of the Embedded World Conference 2019, Nuremberg, Germany, 26–28 February 2019. [Google Scholar]
- Shaikh, F.K.; Zeadally, S.; Exposito, E. Enabling Technologies for Green Internet of Things. IEEE Syst. J. 2017, 11, 983–994. [Google Scholar] [CrossRef]
- Wang, K.; Wang, Y.; Sun, Y.; Guo, S.; Wu, J. Green Industrial Internet of Things Architecture: An Energy-Efficient Perspective. IEEE Commun. Mag. 2016, 54, 48–54. [Google Scholar] [CrossRef]
- Valdes Pena, M.D.; Rodriguez-Andina, J.J.; Manic, M. The Internet of Things—The Role of Reconfigurable Platforms. IEEE Ind. Electron. Mag. 2017, 11, 6–19. [Google Scholar] [CrossRef]
- Gomes, T.; Salgado, F.; Tavares, A.; Cabral, J. CUTE Mote, A Customizable and Trustable End-Device for the Internet of Things. IEEE Sens. J. 2017, 17, 6816–6824. [Google Scholar] [CrossRef]
- Engel, A.; Koch, A. Heterogeneous Wireless Sensor Nodes That Target the IoT. IEEE Micro 2016, 36, 8–15. [Google Scholar] [CrossRef]
- Silva, M.; Tavares, A.; Gomes, T.; Pinto, S. ChamelIoT: An Agnostic Operating System Framework for Reconfigurable IoT Devices. IEEE Internet Things J. 2019, 6, 1291–1292. [Google Scholar] [CrossRef]
- De la Piedra, A.; Braeken, A.; Touhafi, A. Sensor Systems Based on FPGAs and Their Applications: A Survey. Sensors 2012, 12, 12235–12264. [Google Scholar] [CrossRef] [Green Version]
- Tsai, C.W.; Lai, C.F.; Vasilakos, A.V. Future Internet of Things: Open issues and challenges. Wirel. Netw. 2014, 20, 2201–2217. [Google Scholar] [CrossRef]
- Keoh, S.L.; Kumar, S.S.; Tschofenig, H. Securing the Internet of Things: A Standardization Perspective. IEEE Internet Things J. 2014, 1, 265–275. [Google Scholar] [CrossRef]
- Gomes, T.; Pinto, S.; Gomes, T.; Tavares, A.; Cabral, J. Towards an FPGA-based edge device for the Internet of Things. In Proceedings of the 2015 IEEE 20th Conference on Emerging Technologies Factory Automation (ETFA), Luxembourg, 8–11 September 2015; pp. 1–4. [Google Scholar] [CrossRef]
- Al-Kashoash, H.A.A.; Kharrufa, H.; Al-Nidawi, Y.; Kemp, A.H. Congestion control in wireless sensor and 6LoWPAN networks: toward the Internet of Things. Wirel. Netw. 2018, 25, 4493–4522. [Google Scholar] [CrossRef]
- Xu, L.D.; He, W.; Li, S. Internet of Things in industries: A survey. IEEE Trans. Ind. Inform. 2014, 10, 2233–2243. [Google Scholar] [CrossRef]
- Bradey, J.; Barbier, J.; Handler, D. Embracing the Int. of Everything to Capture Your Share of $14.4 Trillion; Technical Report; CISCO: San Jose, CA, USA, 2013. [Google Scholar]
- Silva, B.N.; Khan, M.; Han, K. Internet of Things: A Comprehensive Review of Enabling Technologies, Architecture, and Challenges. IETE Technol. Rev. 2018, 35, 205–220. [Google Scholar] [CrossRef]
- Javed, F.; Afzal, M.K.; Sharif, M.; Kim, B. Internet of Things (IoT) Operating Systems Support, Networking Technologies, Applications, and Challenges: A Comparative Review. IEEE Commun. Surv. Tutor. 2018, 20, 2062–2100. [Google Scholar] [CrossRef]
- Chase, J. The Evolution of the IoT; Technical Report; Texas Instruments: Dallas, TX, USA, 2013. [Google Scholar]
- Keysight. The Internet of Things: Enabling Technologies and Solutions for Design and Test; Technical Report; Keysight Technologies: Santa Rosa, CA, USA, 2016. [Google Scholar]
- Lattice. Accelerating Implementation of Low Power Artificial Intelligence at the Edge; Technical Report; Lattice Semiconductor: Hillsboro, OR, USA, 2018. [Google Scholar]
- Stoica, I.; Song, D.; Popa, R.; Patterson, D.; Mahoney, M.; Katz, R.; Joseph, A.; Jordan, M.; Hellerstein, J.; Gonzalez, J.; et al. A Berkeley View of Systems Challenges for AI; Cornell University: Ithaca, NY, USA, 2017. [Google Scholar]
- Fernandez Molanes, R.; Amarasinghe, K.; Rodriguez-Andina, J.; Manic, M. Deep Learning and Reconfigurable Platforms in the Internet of Things: Challenges and Opportunities in Algorithms and Hardware. IEEE Ind. Electron. Mag. 2018, 12, 36–49. [Google Scholar] [CrossRef]
- Luo, T.; Nagarajan, S.G. Distributed Anomaly Detection Using Autoencoder Neural Networks in WSN for IoT. In Proceedings of the 2018 IEEE International Conference on Communications (ICC), Kansas City, MO, USA, 20–24 May 2018; pp. 1–6. [Google Scholar]
- IEC. IoT 2020: Smart and Secure IoT Platform; Technical Report; IEC: Geneva, Switzerland, 2015. [Google Scholar] [CrossRef] [Green Version]
- Granjal, J.; Monteiro, E.; Sá Silva, J. Security for the Internet of Things: A Survey of Existing Protocols and Open Research Issues. IEEE Commun. Surv. Tutor. 2015, 17, 1294–1312. [Google Scholar] [CrossRef]
- Arm. Security Manifesto I; Technical Report; ARM: Cambridge, UK, 2017. [Google Scholar]
- Jing, Q.; Vasilakos, A.V.; Wan, J.; Lu, J.; Qiu, D. Security of the Internet of Things: Perspectives and challenges. Wirel. Netw. 2014, 20, 2481–2501. [Google Scholar] [CrossRef]
- Cerdeira, D.; Santos, N.; Fonseca, P.; Pinto, S. SoK: Understanding the Prevailing Security Vulnerabilities in TrustZone-assisted TEE Systems. In Proceedings of the IEEE Symposium on Security and Privacy (S&P), San Francisco, CA, USA, 18–20 May 2020. [Google Scholar]
- IEEE. Internet of Things for Telecom Engineers—A Report on Current State and Future Technologies; Technical Report; IEEE: Piscataway, NJ, USA, 2016. [Google Scholar]
- Clark, D.D.; Wilson, D.R. A Comparison of Commercial and Military Computer Security Policies. In Proceedings of the 1987 IEEE Symposium on Security and Privacy, Oakland, CA, USA, 27–29 April 1987; p. 184. [Google Scholar] [CrossRef] [Green Version]
- Committee on National Security Systems. Committee on National Security Systems (CNSS) Glossary; Technical Report; Committee on National Security Systems: Fort Meade, MD, USA, 2015.
- International Organization for Standardization. Information Technology—Security Techniques—Information Security Management Systems—Overview and Vocabulary; Technical Report; International Organization for Standardization: Geneva, Switzerland, 2018. [Google Scholar]
- Moghaddasi, H.; Sajjadi, S.; Kamkarhaghighi, M. Reasons in Support of Data Security and Data Security Management as Two Independent Concepts: A New Model. Open Med. Inform. J. 2016, 10, 4–10. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.; Zhang, S.; Li, Z.; Zhang, Y.; Deng, Q.; Ray, S.; Jin, Y. Internet-of-Things Security and Vulnerabilities: Taxonomy, Challenges, and Practice. J. Hardw. Syst. Secur. 2018, 2, 97–110. [Google Scholar] [CrossRef]
- Farooq, M.; Waseem, M.; Khairi, A.; Mazhar, S. Article: A Critical Analysis on the Security Concerns of Internet of Things (IoT). Int. J. Comput. Appl. 2015, 111, 1–6. [Google Scholar]
- Benabdessalem, R.; Hamdi, M.; Kim, T. A Survey on Security Models, Techniques, and Tools for the Internet of Things. In Proceedings of the 2014 7th International Conference on Advanced Software Engineering and Its Applications, Haikou, China, 20–23 December 2014; pp. 44–48. [Google Scholar] [CrossRef]
- Farhadi, M.; Miorandi, D.; Pierre, G. Blockchain enabled fog structure to provide data security in IoT applications. arXiv 2019, arXiv:1901.04830. [Google Scholar]
- Alqassem, I.; Svetinovic, D. A taxonomy of security and privacy requirements for the Internet of Things (IoT). In Proceedings of the 2014 IEEE International Conference on Industrial Engineering and Engineering Management, Bandar Sunway, Malaysia, 9–12 December 2014; pp. 1244–1248. [Google Scholar]
- Sicari, S.; Rizzardi, A.; Grieco, L.; Coen-Porisini, A. Security, privacy and trust in Internet of Things: The road ahead. Comput. Netw. 2015, 76, 146–164. [Google Scholar] [CrossRef]
- Pennekamp, J.; Henze, M.; Schmidt, S.; Niemietz, P.; Fey, M.; Trauth, D.; Bergs, T.; Brecher, C.; Wehrle, K. Dataflow Challenges in an Internet of Production: A Security & Privacy Perspective; ACM: London, UK, 2019; pp. 27–38. [Google Scholar] [CrossRef]
- Tan, Y.S.; Ko, R.K.L.; Holmes, G. Security and Data Accountability in Distributed Systems: A Provenance Survey. In Proceedings of the 2013 IEEE 10th International Conference on High Performance Computing and Communications & 2013 IEEE International Conference on Embedded and Ubiquitous Computing, Zhangjiajie, China, 13–15 November 2013; pp. 1571–1578. [Google Scholar] [CrossRef]
- Baker, A. A Survey of Information Security Implementations for the Internet of Things; Technical Report; Wind River: Alameda, CA, USA, 2017. [Google Scholar]
- US Homeland Security. Strategic Principles for Securing the Internet of Things; Technical Report; U.S. Department of Homeland Security: Washington, DC, USA, 2016.
- Derwig, R. Securing the Internet of Things; Technical Report; Synopsys: Mountain View, CA, USA, 2016. [Google Scholar]
- Pinto, S.; Santos, N. Demystifying Arm TrustZone: A Comprehensive Survey. ACM Comput. Surv. 2019, 51, 130:1–130:36. [Google Scholar] [CrossRef]
- Pinto, S.; Gomes, T.; Pereira, J.; Cabral, J.; Tavares, A. IIoTEED: An Enhanced, Trusted Execution Environment for Industrial IoT Edge Devices. IEEE Internet Comput. 2017, 21, 40–47. [Google Scholar] [CrossRef]
- Pinto, S.; Araujo, H.; Oliveira, D.; Martins, J.; Tavares, A. Virtualization on TrustZone-enabled Microcontrollers? Voilà! In Proceedings of the 25th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), Montreal, QC, Canada, 16–18 April 2019. [Google Scholar]
- Nisarga, B.; Peeters, E. System-Level Tamper Protection Using MSP MCUs; Technical Report; Texas Instruments: Dallas, TX, USA, 2016. [Google Scholar]
- Gueron, S. Intel Advanced Encryption Standard (AES) New Instructions Set; Technical Report; Intel: Santa Clara, CA, USA, 2010. [Google Scholar]
- Kocher, P.C. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. In 16th Annual International Cryptology Conference on Advances in Cryptology; Springer: London, UK, 1996; pp. 104–113. [Google Scholar]
- Rambus. DPA Countermeasures; Technical Report; Rambus: Sunnyvale, CA, USA, 2018. [Google Scholar]
- Piscitelli, R.; Bhasin, S.; Regazzoni, F. Fault attacks, injection techniques and tools for simulation. In Hardware Security and Trust: Design and Deployment of Integrated Circuits in a Threatened Environment; Springer International Publishing: Berlin, Germany, 2017; pp. 27–47. [Google Scholar] [CrossRef]
- Riscure. Riscure Inspector; Technical Report; Riscure: Delft, The Netherlands, 2017. [Google Scholar]
- Lee, K.; Lee, Y.; Lee, H.; Yim, K. A Brief Review on JTAG Security. In Proceedings of the 2016 10th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS), Fukuoka, Japan, 6–8 July 2016; pp. 486–490. [Google Scholar] [CrossRef]
- Kamalinejad, P.; Mahapatra, C.; Sheng, Z.; Mirabbasi, S.; Leung, V.C.M.; Guan, Y.L. Wireless energy harvesting for the Internet of Things. IEEE Commun. Mag. 2015, 53, 102–108. [Google Scholar] [CrossRef] [Green Version]
- Alioto, M.; Shahghasemi, M. The Internet of Things on Its Edge: Trends Toward Its Tipping Point. IEEE Consum. Electron. Mag. 2018, 7, 77–87. [Google Scholar] [CrossRef]
- Rosello, V.; Portilla, J.; Riesgo, T. Ultra low power FPGA-based architecture for Wake-up Radio in Wireless Sensor Networks. In Proceedings of the IECON 2011—37th Annual Conference of the IEEE Industrial Electronics Society, Melbourne, VIC, Australia, 7–10 November 2011; pp. 3826–3831. [Google Scholar]
- Koromilas, E.; Stamelos, I.; Kachris, C.; Soudris, D. Spark acceleration on FPGAs: A use case on machine learning in Pynq. In Proceedings of the 2017 6th International Conference on Modern Circuits and Systems Technologies (MOCAST), Thessaloniki, Greece, 4–6 May 2017; pp. 1–4. [Google Scholar]
- Rodriguez-Andina, J.J.; De la Torre Arnanz, E.; Valdes Pena, M.D. FPGAs: Fundamentals, Advanced Features, and Applications in Industrial Electronics, 1st ed.; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Salgado, F.; Gomes, T.; Cabral, J.; Monteiro, J.; Tavares, A. DBTOR: A Dynamic Binary Translation Architecture for Modern Embedded Systems. In Proceedings of the 2019 IEEE International Conference on Industrial Technology (ICIT), Melbourne, Australia, 13–15 February 2019; pp. 1755–1760. [Google Scholar]
- Guruprasad, S.; Bisnath, S.; Lee, R.; Kozinski, J. Design and implementation of a low-cost SoC-based software GNSS receiver. IEEE Aerosp. Electron. Syst. Mag. 2016, 31, 14–19. [Google Scholar] [CrossRef]
- Intel Corporation. Arria V SoC FPGAs—Intel FPGA. Available online: https://www.intel.com/content/www/us/en/products/programmable/soc/arria-v.html (accessed on 9 December 2019).
- Intel Corporation. Intel Arria 10 SoC FPGAs Overview—Arria SoC FPGAs Software. Available online: https://www.intel.com/content/www/us/en/products/programmable/soc/arria-10.html (accessed on 9 December 2019).
- Intel Corporation. Intel Agilex FPGAs and SoCs FPGA Family. Available online: https://www.intel.com/content/www/us/en/products/programmable/fpga/agilex.html (accessed on 9 December 2019).
- Intel Corporation. Intel Stratix 10 SX Soc FPGAs—Intel FPGAs. Available online: https://www.intel.com/content/www/us/en/products/programmable/soc/stratix-10.html (accessed on 9 December 2019).
- Xilinx. Zynq-7000 SoC. Available online: https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html (accessed on 9 December 2019).
- Xilinx. Zynq UltraScale+ MPSoC. Available online: https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html (accessed on 9 December 2019).
- Microsemi. SmartFusion | Microsemi. Available online: https://www.microsemi.com/product-directory/soc-fpgas/1693-smartfusion (accessed on 9 December 2019).
- Microsemi. SmartFusion2 SoC FPGAs | Microsemi. Available online: https://www.microsemi.com/product-directory/soc-fpgas/1692-smartfusion2 (accessed on 9 December 2019).
- Microsemi. IGLOO2 FPGAs | Microsemi. Available online: https://www.microsemi.com/product-directory/fpgas/1688-igloo2 (accessed on 9 December 2019).
- Microsemi. PolarFire FPGAs | Microsemi. Available online: https://www.microsemi.com/product-directory/fpgas/3854-polarfire-fpgas (accessed on 9 December 2019).
- QuickLogic Corporation. EOS S3 | Microsemi. Available online: https://www.quicklogic.com/products/eos-s3/ (accessed on 9 December 2019).
- Lattice Semicondutor. ECP5/ECP5-5G—Lattice Semicondutor. Available online: https://www.latticesemi.com/Products/FPGAandCPLD/ECP5 (accessed on 9 December 2019).
- Lattice Semicondutor. iCE40 UltraPlus—Lattice Semicondutor. Available online: http://www.latticesemi.com/en/Products/FPGAandCPLD/iCE40UltraPlus (accessed on 9 December 2019).
- Gomes, T.; Pinto, S.; Salgado, F.; Tavares, A.; Cabral, J. Building IEEE 802.15.4 Accelerators for Heterogeneous Wireless Sensor Nodes. IEEE Sens. Lett. 2017, 1, 1–4. [Google Scholar] [CrossRef]
- Gomes, T.; Salgado, F.; Pinto, S.; Cabral, J.; Tavares, A. A 6LoWPAN Accelerator for Internet of Things Endpoint Devices. IEEE Internet Things J. 2018, 5, 371–377. [Google Scholar] [CrossRef]
- Rao, M.; Newe, T.; Grout, I.; Mathur, A. An FPGA-based Reconfigurable IPSec AH Core with Efficient Implementation of SHA-3 for High Speed IoT Applications. Secur. Commun. Netw. 2016, 9, 3282–3295. [Google Scholar] [CrossRef]
- Zhao, R.; Song, W.; Zhang, W.; Xing, T.; Lin, J.H.; Srivastava, M.; Gupta, R.; Zhang, Z. Accelerating Binarized Convolutional Neural Networks with Software-Programmable FPGAs. In Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA ’17), Monterey, CA, USA, 22–24 February 2017; pp. 15–24. [Google Scholar] [CrossRef] [Green Version]
- Qiu, J.; Wang, J.; Yao, S.; Guo, K.; Li, B.; Zhou, E.; Yu, J.; Tang, T.; Xu, N.; Song, S.; et al. Going Deeper with Embedded FPGA Platform for Convolutional Neural Network. In Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA ’16), Monterey, CA, USA, 21–23 February 2016; pp. 26–35. [Google Scholar]
- Zhang, J.; Li, J. Improving the Performance of OpenCL-based FPGA Accelerator for Convolutional Neural Network. In Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA ’17), Monterey, CA, USA, 22–24 February 2017; pp. 25–34. [Google Scholar]
- Zhang, X.; Ramachandran, A.; Zhuge, C.; He, D.; Zuo, W.; Cheng, Z.; Rupnow, K.; Chen, D. Machine learning on FPGAs to face the IoT revolution. In Proceedings of the 2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Irvine, CA, USA, 13–16 November 2017; pp. 819–826. [Google Scholar] [CrossRef]
- de la Piedra, A.; Braeken, A.; Touhafi, A. A performance comparison study of ECC and AES in commercial and research sensor nodes. In Proceedings of the Eurocon 2013, Zagreb, Croatia, 1–4 July 2013; pp. 347–354. [Google Scholar] [CrossRef]
- Xu, X.; Wang, Y. High Speed True Random Number Generator Based on FPGA. In Proceedings of the 2016 International Conference on Information Systems Engineering (ICISE), Los Angeles, CA, USA, 20–22 April 2016; pp. 18–21. [Google Scholar] [CrossRef]
- Intrinsic-ID. SRAM PUF: The Secure Silicon Fingerprint; Technical Report; Intrinsic-ID: Eindhoven, The Netherlands, 2016. [Google Scholar]
- Schrijen, G.J.; Garlati, C. Physical Unclonable Functions to the Rescue. In Proceedings of the Embedded World 2018, Nuremberg, Germany, 27 February–1 March 2018. [Google Scholar]
- Johnson, A.P.; Chakraborty, R.S.; Mukhopadhyay, D. A PUF-Enabled Secure Architecture for FPGA-Based IoT Applications. IEEE Trans. Multi-Scale Comput. Syst. 2015, 1, 110–122. [Google Scholar] [CrossRef]
- Trimberger, S.M.; Moore, J.J. FPGA security: Motivations, features, and applications. Proc. IEEE 2014, 102, 1248–1265. [Google Scholar] [CrossRef]
- Trimberger, S.M. Three Ages of FPGAs: A Retrospective on the First Thirty Years of FPGA Technology. Proc. IEEE 2015, 103, 318–331. [Google Scholar] [CrossRef]
- Chow, C.T.; Tsui, L.S.M.; Leong, P.H.W.; Luk, W.; Wilton, S.J.E. Dynamic voltage scaling for commercial FPGAs. In Proceedings of the 2005 IEEE International Conference on Field-Programmable Technology, Singapore, 11–14 December 2005; pp. 173–180. [Google Scholar] [CrossRef]
- Ishihara, S.; Xia, Z.; Hariyama, M.; Kameyama, M. Architecture of a low-power FPGA based on self-adaptive voltage control. In Proceedings of the 2009 International SoC Design Conference (ISOCC), Busan, Korea, 22–24 November 2009; pp. 274–277. [Google Scholar]
- Karray, F.; Jmal, M.W.; Garcia-Ortiz, A.; Abid, M.; Obeid, A.M. A comprehensive survey on wireless sensor node hardware platforms. Comput. Netw. 2018, 144, 89–110. [Google Scholar] [CrossRef]
- Berder, O.; Sentieys, O. PowWow: Power Optimized Hardware/Software Framework for Wireless Motes. In Proceedings of the 23th International Conference on Architecture of Computing Systems 2010, Hannover, Germany, 22–23 February 2010; pp. 1–5. [Google Scholar]
- Vera-Salas, L.A.; Moreno-Tapia, S.V.; Osornio-Rios, R.A.; d. Romero-Troncoso, R. Reconfigurable Node Processing Unit for a Low-Power Wireless Sensor Network. In Proceedings of the 2010 International Conference on Reconfigurable Computing and FPGAs, Quintana Roo, Mexico, 13–15 December 2010; pp. 173–178. [Google Scholar] [CrossRef]
- Nyländen, T.; Boutellier, J.; Nikunen, K.; Hannuksela, J.; Silvén, O. Reconfigurable miniature sensor nodes for condition monitoring. In Proceedings of the 2012 International Conference on Embedded Computer Systems (SAMOS), Samos, Greece, 16–19 July 2012; pp. 113–119. [Google Scholar]
- Stelte, B. Toward development of high secure sensor network nodes using an FPGA-based architecture. In Proceedings of the 6th International Wireless Communications and Mobile Computing Conference (IWCMC), Caen, France, 28 June–2 July 2010; p. 539. [Google Scholar] [CrossRef]
- Oliveira, D.; Gomes, T.; Pinto, S. Towards a Green and Secure Architecture for Reconfigurable IoT End-Devices. In Proceedings of the 9th ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS), Porto, Portugal, 11–13 April 2018; pp. 335–336. [Google Scholar] [CrossRef]
Security Primitives | CIA Triad Model | Five Pillar Info. Assurance | ISO/IEC 27000 |
---|---|---|---|
Confidentiality | • | • | • |
Integrity | • | • | • |
Availability | • | • | • |
Non-repudiation | • | • | |
Authentication | • | ||
Authenticity | • | ||
Accountability | • |
Company | Family | Application Processor | Real-Time Processor/Microcontroller | Logic Cells (K LEs) | Relevant Features | ||
---|---|---|---|---|---|---|---|
Architecture | GHz | Architecture | GHz | ||||
Intel FPGA | Arria V SoC [77] | Dual-Core ARM Cortex A9 | 1.05 | 350–462 | AES, SHA IPs Side-Channel Prot. | ||
Arria 10 SoC [78] | Dual-Core ARM Cortex A9 | 1.50 | 160–1150 | AES, SHA IPs Side-Channel Prot. Secure Boot | |||
Agilex SoC [79] | Quad-Core ARM Cortex A53 | 1.40 | 3000 | PUF AES. SHA IPs Side-Channel Prot. Secure Boot | |||
Stratix 10 SoC [80] | Quad-Core ARM Cortex A53 | 1.50 | 378–2753 | ||||
Xilinx | Zynq-7000 [81] | Single/Dual-Core ARM Cortex A9 | 0.76–1.00 | 23–444 | PUF Side-Channel Prot. AES, SHA, RSA IPs Secure Boot ARM TrustZone | ||
Zynq UltraScale+ [82] | Dual/Quad-Core ARM Cortex-A53 | 1.30–1.50 | Dual-Core ARM Cortex-R5 | 0.53–0.60 | 103–1143 | ||
Microsemi | SmartFusion [83] | Single-Core ARM Cortex-M3 | 0.10 | 2–6 | Side-Channel Prot. AES, SHA, RSA IPs | ||
SmartFusion 2 [84] | Single-Core ARM Cortex-M3 | 0.16 | 5–150 | PUF Side-Channel Prot. AES, SHA, RSA IPs Secure Boot | |||
RISC-V (S/C) 8051 (S/C) | |||||||
IGLOO2 [85] | RISC-V (S/C) 8051 (S/C) | ||||||
PolarFire [86] | RISC-V (SC) ARM Cortex-M1 (S/C) | 300 | Secure Boot | ||||
QuickLogic | S3 [87] | Single-Core ARM Cortex M4-F | 0.08 | 2.4 | Power Manag. Unit | ||
Lattice | ECP5 [88] | RISC-V (S/C) | 12–84 | AES IPs Neural Network IPs | |||
iCE40 UltraPlus [89] | RISC-V (S/C) | 2.8–5.28 |
HaloMote [22] | CUTE Mote [21] | Cookies WSN [72] | PowWow [107] | Vera-Salas et al. [108] | Nyländen et al. [109] | Stelte [110] | |
---|---|---|---|---|---|---|---|
T&C #1: Connectivity | IEEE 802.15.4 | IEEE 802.15.4, 6LoWPAN, UDP | IEEE 802.15.4, Zigbee, 6LoWPAN | IEEE 802.15.4, 6LoWPAN, UDP | IEEE 802.15.4 | IEEE 802.15.4 | N/P |
Radio Device | ATmega256RFR2 | TI CC2520 | ETRX2-PA, TI CC2420 | TI CC2420 | Microchip MRF24J40 | TI CC2420 | N/P |
Network Acceleration | MAC filter (RF-SoC) | MAC filter (RF-IC, FPGA), 6LoWPAN & IPv6 & UDP (FPGA) | MAC filter (RF-IC), LQE (FPGA) | MAC filter (RF-IC), ARQ & FEC (FPGA) | MAC filter (RF-IC) | N/A | N/P |
T&C #2: Edge Intelligence | N/A | N/A | N/A | N/A | N/A | N/A | N/A |
T&C #3: Security | N/A | Data & Device | Data | Data | N/A | N/A | Data |
Device Security | N/A | HW-RoT, PUF, etc. | N/A | N/A | N/A | N/A | N/A |
Data Security | N/A | Athena TeraFire Crypto-processor | ECDSA (ECC), SH-1, MD5 (FPGA) | ECC (FPGA) | N/A | N/A | TPM-based memory block, ECC (FPGA) |
T&C #4: Energy | DPM, Flash*Freeze | DPM, Flash*Freeze | Flash*Freeze | DFVS, Flash*Freeze | Flash*Freeze | Flash*Freeze | Flash*Freeze |
Power Consumption Values | Active/Idle (mW): 30/0.053 | Active: 56.52 mW Flash*Freeze: 0.18 mW | N/P | N/P | Active/Sleep (mW): 8.42/0.03 RMS, 5.73/0.03 FFT, 6.32/0.03 FIR | Average: 8–11 mW (core, transceiver and sensor) | Active: 4.51 mW Flash*Freeze: 0.11 mW Sleep: 0.01 mW |
FPGA/FPSoC Device | Microsemi IGLOO AGL1000 | Microsemi SmartFusion2 | Microsemi IGLOO AGL250 | Microsemi IGLOO AGL250 | Microsemi IGLOO-nano AGLN250 | Microsemi IGLOO AGL1000 | Microsemi IGLOO AGL600 |
MCU Architecitecture | 8-bit AVR | Arm Cortex-M3 | 16-bit TI MSP430 | 16-bit TI MSP430 | HSP | TTA-based | OpenMSP430 |
(Type) | (RF-SoC) | (MCU) | (MCU) | (MCU) | (Co-Processor) | (Soft-core) | (Soft-core) |
Data HW Processor | RDT, Rice | SDP | SDP | N/P | RMS, FIR FFT, SDP | RMS, FFT, SDP | SDP |
Maturity Level | Final | Proto./Final | Final | Proto./Final | Proto./Final | Concept/Proto. | Concept |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, D.; Costa, M.; Pinto, S.; Gomes, T. The Future of Low-End Motes in the Internet of Things: A Prospective Paper. Electronics 2020, 9, 111. https://doi.org/10.3390/electronics9010111
Oliveira D, Costa M, Pinto S, Gomes T. The Future of Low-End Motes in the Internet of Things: A Prospective Paper. Electronics. 2020; 9(1):111. https://doi.org/10.3390/electronics9010111
Chicago/Turabian StyleOliveira, Daniel, Miguel Costa, Sandro Pinto, and Tiago Gomes. 2020. "The Future of Low-End Motes in the Internet of Things: A Prospective Paper" Electronics 9, no. 1: 111. https://doi.org/10.3390/electronics9010111