Next Article in Journal
In Vitro High Throughput Screening, What Next? Lessons from the Screening for Aurora Kinase Inhibitors
Next Article in Special Issue
Combustion, Respiration and Intermittent Exercise: A Theoretical Perspective on Oxygen Uptake and Energy Expenditure
Previous Article in Journal
Miniaturized Bioaffinity Assessment Coupled to Mass Spectrometry for Guided Purification of Bioactives from Toad and Cone Snail
Article Menu

Export Article

Open AccessReview
Biology 2014, 3(1), 157-166; doi:10.3390/biology3010157

McArdle Disease and Exercise Physiology

Department of Sports Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
Received: 5 February 2014 / Revised: 19 February 2014 / Accepted: 20 February 2014 / Published: 25 February 2014
(This article belongs to the Special Issue Muscle Structure and Function)
View Full-Text   |   Download PDF [717 KB, 5 March 2014; original version 25 February 2014]   |  

Abstract

McArdle disease (glycogen storage disease Type V; MD) is a metabolic myopathy caused by a deficiency in muscle glycogen phosphorylase. Since muscle glycogen is an important fuel for muscle during exercise, this inborn error of metabolism provides a model for understanding the role of glycogen in muscle function and the compensatory adaptations that occur in response to impaired glycogenolysis. Patients with MD have exercise intolerance with symptoms including premature fatigue, myalgia, and/or muscle cramps. Despite this, MD patients are able to perform prolonged exercise as a result of the “second wind” phenomenon, owing to the improved delivery of extra-muscular fuels during exercise. The present review will cover what this disease can teach us about exercise physiology, and particularly focuses on the compensatory pathways for energy delivery to muscle in the absence of glycogenolysis.
Keywords: McArdle disease; skeletal muscle; metabolism McArdle disease; skeletal muscle; metabolism
This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Kitaoka, Y. McArdle Disease and Exercise Physiology. Biology 2014, 3, 157-166.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Biology EISSN 2079-7737 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top