Magnetic Au-Ag-γ-Fe2O3/rGO Nanocomposites as an Efficient Catalyst for the Reduction of 4-Nitrophenol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Au-Ag-γ-Fe2O3/rGO Nanocomposites
2.3. Characterization
2.4. Catalytic Reduction of 4-NP by Au-Ag-γ-Fe2O3/rGO Nanocomposites
3. Results and Discussion
3.1. Synthesis of Au-Ag-γ-Fe2O3/rGO Nanocomposites
3.2. Catalytic Reaction of 4-NP by Au-Ag-γ-Fe2O3/rGO Nanocomposites
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kelly, K.L.; Coronado, E.; Zhao, L.L.; Schatz, G.C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 2003, 107, 668–677. [Google Scholar] [CrossRef]
- Arico, A.S.; Bruce, P.; Scrosati, B.; Tarascon, J.M.; Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377. [Google Scholar] [CrossRef] [PubMed]
- Daniel, M.C.; Astruc, D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004, 104, 293–346. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, M.M.; Al-Sharif, M.S. One pot synthesis of silver nanoparticles supported on TiO2 using hybrid polymers as template and its efficient catalysis for the reduction of 4-nitrophenol. Mater. Chem. Phys. 2012, 136, 528–537. [Google Scholar] [CrossRef]
- Gilroy, K.D.; Ruditskiy, A.; Peng, H.C.; Qin, D.; Xia, Y.N. Bimetallic Nanocrystals: Syntheses, Properties, and Applications. Chem. Rev. 2016, 116, 10414–10472. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Wang, J.; Zhang, G.; Fan, X.; Zhang, G.; Zhang, F.; Li, Y. Deoxyribonucleic acid-directed growth of well dispersed nickel-palladium-platinum nanoclusters on graphene as an efficient catalyst for ethanol electrooxidation. J. Power Sources 2015, 278, 43–49. [Google Scholar] [CrossRef]
- Chen, H.; Li, Y.; Zhang, F.; Zhang, G.; Fan, X. Graphene supported Au-Pd bimetallic nanoparticles with core-shell structures and superior peroxidase-like activities. J. Mat. Chem. 2011, 21, 17658–17661. [Google Scholar] [CrossRef]
- Qin, Y.; Dai, X.; Zhang, X.; Huang, X.; Sun, H.; Gao, D.; Yu, Y.; Zhang, P.; Jiang, Y.; Zhuo, H.; et al. Microwave-assisted synthesis of multiply-twinned Au-Ag nanocrystals on reduced graphene oxide for high catalytic performance towards hydrogen evolution reaction. J. Phys. Chem. A 2016, 4, 3865–3871. [Google Scholar] [CrossRef]
- Chae, H.K.; Siberio-Perez, D.Y.; Kim, J.; Go, Y.; Eddaoudi, M.; Matzger, A.J.; O’Keeffe, M.; Yaghi, O.M. A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 2004, 427, 523–527. [Google Scholar] [CrossRef] [PubMed]
- Meyer, J.C.; Geim, A.K.; Katsnelson, M.I.; Novoselov, K.S.; Booth, T.J.; Roth, S. The structure of suspended graphene sheets. Nature 2007, 446, 60–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.; Wei, X.D.; Kysar, J.W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef] [PubMed]
- Balandin, A.A.; Ghosh, S.; Bao, W.Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Katsnelson, M.I.; Grigorieva, I.V.; Dubonos, S.V.; Firsov, A.A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, C.L.; Loh, K.P. Carbocatalysts: Graphene Oxide and Its Derivatives. Accounts Chem. Res. 2013, 46, 2275–2285. [Google Scholar] [CrossRef] [PubMed]
- Bartolome, L.; Imran, M.; Lee, K.G.; Sangalang, A.; Ahn, J.K.; Kim, D.H. Superparamagnetic gamma-Fe2O3 nanoparticles as an easily recoverable catalyst for the chemical recycling of PET. Green Chem. 2014, 16, 279–286. [Google Scholar] [CrossRef]
- Paul, B.; Purkayastha, D.D.; Dhar, S.S.; Das, S.; Haldar, S. Facile one-pot strategy to prepare Ag/Fe2O3 decorated reduced graphene oxide nanocomposite and its catalytic application in chemoselective reduction of nitroarenes. J. Alloys Compd. 2016, 681, 316–323. [Google Scholar] [CrossRef]
- Hummers, W.S.; Offeman, R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Vrijmoeth, J.; van der Vegt, H.A.; Meyer, J.A.; Vlieg, E.; Behm, R.J. Surfactant-induced layer-by-layer growth of Ag on Ag(111): Origins and side effects. Phys. Rev. Lett. 1994, 72, 3843–3846. [Google Scholar] [CrossRef] [PubMed]
- Van der Vegt, H.A.; van Pinxteren, H.M.; Lohmeier, M.; Vlieg, E.; Thornton, J.M. Surfactant-induced layer-by-layer growth of Ag on Ag(111). Phys. Rev. Lett. 1992, 68, 3335–3338. [Google Scholar] [CrossRef] [PubMed]
- Majimel, J.; Lamirand-Majimel, M.; Moog, I.; Feral-Martin, C.; Treguer-Delapierre, M. Size-Dependent Stability of Supported Gold Nanostructures onto Ceria: An HRTEM Study. J. Phys. Chem. C 2009, 113, 9275–9283. [Google Scholar] [CrossRef]
- Babay, S.; Mhiri, T.; Toumi, M. Synthesis, structural and spectroscopic characterizations of maghemite gamma-Fe2O3 prepared by one-step coprecipitation route. J. Mol. Struct. 2015, 1085, 286–293. [Google Scholar] [CrossRef]
- Shwan, S.; Jansson, J.; Olsson, L.; Skoglundh, M. Chemical deactivation of Fe-BEA as NH3-SCR catalyst-Effect of phosphorous. Appl. Catal. B-Environ. 2014, 147, 111–123. [Google Scholar] [CrossRef]
- Saha, S.; Pal, A.; Kundu, S.; Basu, S.; Pal, T. Photochemical Green Synthesis of Calcium-Alginate-Stabilized Ag and Au Nanoparticles and Their Catalytic Application to 4-Nitrophenol Reduction. Langmuir 2010, 26, 2885–2893. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, N.; Pal, A.; Pal, T. Catalytic Reduction of Aromatic Nitro Compounds by Coinage Metal Nanoparticles. Langmuir 2001, 17, 1800–1802. [Google Scholar] [CrossRef]
- Mandlimath, T.R.; Gopal, B. Catalytic activity of first row transition metal oxides in the conversion of p-nitrophenol to p-anninophenol. J. Mol. Catal. A-Chem. 2011, 350, 9–15. [Google Scholar] [CrossRef]
- Wang, X.; Xia, F.; Li, X.; Xu, X.; Wang, H.; Yang, N.; Gao, J. Fabrication of Bi-Fe3O4@RGO hybrids and their catalytic performance for the reduction of 4-nitrophenol. J. Nanopart. Res. 2015, 17, 436. [Google Scholar] [CrossRef]
- Chen, H.; Fan, X.; Ma, J.; Zhang, G.; Zhang, F.; Li, Y. Green Route for Microwave-Assisted Preparation of AuAg-Alloy-Decorated Graphene Hybrids with Superior 4-NP Reduction Catalytic Activity. Ind. Eng. Chem. Res. 2014, 53, 17976–17980. [Google Scholar] [CrossRef]
- Yan, F.; Sun, R. Facile synthesis of bifunctional Fe3O4/Au nanocomposite and their application in catalytic reduction of 4-nitrophenol. Mater. Res. Bull. 2014, 57, 293–299. [Google Scholar] [CrossRef]
- Qu, J.-C.; Ren, C.-L.; Dong, Y.-L.; Chang, Y.-P.; Zhou, M.; Chen, X.-G. Facile synthesis of multifunctional graphene oxide/AgNPs-Fe3O4 nanocomposite: A highly integrated catalysts. Chem. Eng. J. 2012, 211, 412–420. [Google Scholar] [CrossRef]
- Joshi, M.K.; Pant, H.R.; Kim, H.J.; Kim, J.H.; Kim, C.S. One-pot synthesis of Ag-iron oxide/reduced graphene oxide nanocomposite via hydrothermal treatment. Colloids Surf. A 2014, 446, 102–108. [Google Scholar] [CrossRef]
- Le, X.; Dong, Z.; Liu, Y.; Jin, Z.; Thanh-Do, H.; Minhdong, L.; Ma, J. Palladium nanoparticles immobilized on core-shell magnetic fibers as a highly efficient and recyclable heterogeneous catalyst for the reduction of 4-nitrophenol and Suzuki coupling reactions. J. Mater. Chem. A 2014, 2, 19696–19706. [Google Scholar] [CrossRef]
- Mu, B.; Zhang, W.; Wang, A. Facile fabrication of superparamagnetic coaxial gold/halloysite nanotubes/Fe3O4 nanocomposites with excellent catalytic property for 4-nitrophenol reduction. J. Mater. Sci. 2014, 49, 7181–7191. [Google Scholar] [CrossRef]
- Wilson, O.M.; Scott, R.W.J.; Garcia-Martinez, J.C.; Crooks, R.M. Synthesis, characterization, and structure-selective extraction of 1-3-nm diameter AuAg dendrimer-encapsulated bimetallic nanoparticles. J. Am. Chem. Soc. 2005, 127, 1015–1024. [Google Scholar] [CrossRef] [PubMed]
Catalyst | Catalyst Usage Amount (mg) | Concentration of 4-NP (M) | Rate Constant k (s−1) | Normalized Rate Constant k * (s−1 mg−1) a | References |
---|---|---|---|---|---|
Au-Ag-γ-Fe2O3/rGO | 0.03 | 1.0 × 10−4 | 0.0133 | 0.443 | Present work |
Bi-Fe3O4@RGO | 0.5 | 1.54 × 10−3 | 0.00808 | 0.016 | [26] |
AuAg−G (OB) | 0.03 | 1.0 × 10−4 | 0.0089 | 0.297 | [27] |
Fe3O4/Au | 0.05 | 6.7 × 10−5 | 0.00728 | 0.146 | [28] |
GO/Ag−Fe3O4 | 0.09 | 0.01 | 0.0142 | 0.158 | [29] |
Ag-Fe3O4/RGO | 4.0 | 1.0 × 10−4 | 0.044 | 0.011 | [30] |
Pd/Fe3O4@SiO2@KCC-1 | 0.025 | 1.0 × 10−4 | 0.0196 | 0.784 | [31] |
Au/HNTs/Fe3O4 | 50 | 5.0 × 10−3 | 0.021 | 4.2 × 10−4 | [32] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, G.; Ma, J.; Li, Z.; Fan, X.; Peng, W.; Zhang, G.; Zhang, F.; Li, Y. Magnetic Au-Ag-γ-Fe2O3/rGO Nanocomposites as an Efficient Catalyst for the Reduction of 4-Nitrophenol. Nanomaterials 2018, 8, 877. https://doi.org/10.3390/nano8110877
Lei G, Ma J, Li Z, Fan X, Peng W, Zhang G, Zhang F, Li Y. Magnetic Au-Ag-γ-Fe2O3/rGO Nanocomposites as an Efficient Catalyst for the Reduction of 4-Nitrophenol. Nanomaterials. 2018; 8(11):877. https://doi.org/10.3390/nano8110877
Chicago/Turabian StyleLei, Guangyu, Jingwen Ma, Zhen Li, Xiaobin Fan, Wenchao Peng, Guoliang Zhang, Fengbao Zhang, and Yang Li. 2018. "Magnetic Au-Ag-γ-Fe2O3/rGO Nanocomposites as an Efficient Catalyst for the Reduction of 4-Nitrophenol" Nanomaterials 8, no. 11: 877. https://doi.org/10.3390/nano8110877
APA StyleLei, G., Ma, J., Li, Z., Fan, X., Peng, W., Zhang, G., Zhang, F., & Li, Y. (2018). Magnetic Au-Ag-γ-Fe2O3/rGO Nanocomposites as an Efficient Catalyst for the Reduction of 4-Nitrophenol. Nanomaterials, 8(11), 877. https://doi.org/10.3390/nano8110877