Nanoscale Assembly of Copper Bearing-Sleeve via Cold-Welding: A Molecular Dynamics Study
Abstract
:1. Introduction
2. Theoretical Methods
2.1. Modeling of Copper Bearing-Sleeve
2.2. Computational Methods and Parameters
2.3. MD Simulation Details
3. Results and Discussion
4. Conclusions
- The inside radius of the nanobearing affects the mechanical performance because of joint size.
- Mechanical strength and weld stress of combination observably go down as temperature rise, due to the formation of relatively fewer quantity disordered structures when cold-welding.
- A higher loading rate lead to the emergence of a composition with more disorganized structures, which is attributed to the increase in kinetic energy as the cold-welding rate goes up.
- There is no link between the stretching velocity and breaking points, which could be additional evidence for better mechanical performance of the welding joint.
Author Contributions
Funding
Conflicts of Interest
References
- Wu, C.D.; Fang, T.H.; Kuo, C.H. Atomistic simulation of nanodrilling mechanics and mechanism on Cu substrates. Appl. Phys. A 2015, 118, 307–313. [Google Scholar] [CrossRef]
- Chandross, M.; Grest, G.S. Molecular scale modeling of polymer imprint nanolithography. Langmuir 2011, 28, 1049–1055. [Google Scholar] [CrossRef] [PubMed]
- Vo, T.Q.; Kim, B.H. Molecular dynamics study of thermodynamic properties of nanoclusters for additive manufacturing. Int. J. Precis. Eng. Manuf.-Green Technol. 2017, 4, 301–306. [Google Scholar] [CrossRef]
- Calleja, A.; Tabernero, I.; Fernández, A.; Celaya, A.; Lamikiz, A.; de Lacalle, L.N.L. Improvement of strategies and parameters for multi-axis laser cladding operations. Opt. Lasers Eng. 2014, 56, 113–120. [Google Scholar] [CrossRef]
- Wang, W.; Yi, C. Molecular dynamics understanding on tensile behaviours of cold welding experiments of <100> oriented ultra-thin gold nanowires. Mater. Res. Innov. 2014, 18 (Suppl. 2), S2-673–S2-677. [Google Scholar] [CrossRef]
- Mortazavi, B.; Cuniberti, G.; Rabczuk, T. Mechanical properties and thermal conductivity of graphitic carbon nitride: A molecular dynamics study. Comput. Mater. Sci. 2015, 99, 285–289. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Huang, J.Y.; Wang, C.; Sun, S.; Lou, J. Cold welding of ultrathin gold nanowires. Nat. Nanotechnol. 2010, 5, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Pereira, Z.S.; Da Silva, E.Z. Cold welding of gold and silver nanowires: A molecular dynamics study. Phys. Chem. C 2011, 115, 22870–22876. [Google Scholar] [CrossRef]
- Marzbanrad, E.; Hu, A.; Zhao, B.; Zhou, Y. Room temperature nanojoining of triangular and hexagonal silver nanodisks. J. Phys. Chem. C 2013, 117, 16665–16676. [Google Scholar] [CrossRef]
- Huang, R.; Shao, G.F.; Wen, Y.H. Cold welding of copper nanowires with single-crystalline and twinned structures: A comparison study. Phys. E 2016, 83, 329–332. [Google Scholar] [CrossRef]
- Wu, C.D.; Fang, T.H.; Wu, C.C. Atomistic simulations of nanowelding of single-crystal and amorphous gold nanowires. Appl. Phys. 2015, 117, 014307. [Google Scholar] [CrossRef]
- Zhou, H.; Xian, Y.; Wu, R.; Hu, G.; Xia, R. Formation of gold composite nanowires using cold welding: A structure-based molecular dynamics simulation. CrystEngComm 2017, 19, 6347–6354. [Google Scholar] [CrossRef]
- Zhou, H.; L, J.; Xian, Y.; Wu, R.; Hu, G.; Xia, R. Effects of various conditions in cold-welding of copper nanowires: A molecular dynamics study. Phys. Chem. Chem. Phys. 2018, 20, 12288–12294. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.H.; Kuo, J.K.; Wu, Y.F. Atomistic simulations of solid-state pressure welding of metallic nanowires. Appl. Phys. A 2012, 109, 561–569. [Google Scholar] [CrossRef]
- Wu, C.D.; Fang, T.H.; Wu, C.C. Effect of temperature on welding of metallic nanowires investigated using molecular dynamics simulations. Mol. Simul. 2016, 42, 131–137. [Google Scholar] [CrossRef]
- Wu, C.D.; Fang, T.H.; Wu, C.C. Size effect on cold-welding of gold nanowires investigated using molecular dynamics simulations. Appl. Phys. A Mater. 2016, 122, 218. [Google Scholar] [CrossRef]
- Dai, G.; Wang, B.J.; Xu, S.; Lu, Y.; Shen, Y.J. Side-to-Side Cold Welding for Controllable Nanogap Formation from “Dumbbell” Ultrathin Gold Nanorods. ACS Appl. Mater. Interfaces 2016, 8, 13506–13511. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Tian, Y.; Jiang, Z.; He, X. Molecular dynamics simulation of joining process of Ag-Au nanowires and mechanical properties of the hybrid nanojoint. AIP. Adv. 2015, 5, 057120. [Google Scholar] [CrossRef] [Green Version]
- Hoover, W.G.; Hoover, C.G. Computational physics with particles. Am. J. Phys. 2008, 76, 481–492. [Google Scholar] [CrossRef]
- Plimpton, S.; Crozier, P.; Thompson, A. LAMMPS-Large-Scale Atomic/Molecular Massively Parallel Simulator. Sandia Natl. Lab. 2007, 18, 43. [Google Scholar]
- Mendelev, M.I.; Kramer, M.J.; Becker, C.A.; Asta, M. Analysis of semi-empirical interatomic potentials appropriate for simulation of crystalline and liquid Al and Cu. Philos. Mag. 2008, 88, 1723–1750. [Google Scholar] [CrossRef]
- Honeycutt, J.D.; Andersen, H.C. Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J. Phys. Chem. 1987, 91, 4950–4963. [Google Scholar] [CrossRef]
- Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO—The Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 2009, 18, 015012. [Google Scholar] [CrossRef]
- Sanders, D.E.; DePristo, A.E. Predicted diffusion rates on fcc (001) metal surfaces for adsorbate/substrate combinations of Ni, Cu, Rh, Pd, Ag, Pt, Au. Surf. Sci. 1992, 260, 116–128. [Google Scholar] [CrossRef]
- Lebeck, A.O. Principles and Design of Mechanical Face Seals; John Wiley & Sons: Hoboken, NJ, USA, 1991; ISBN 978-0-471-51533-3. [Google Scholar]
- Alberdi, A.; Rivero, A.; De Lacalle, L.N.L.; Etxeberria, I.; Suárez, A. Effect of process parameter on the kerf geometry in abrasive water jet milling. Int. J. Adv. Manuf. Technol. 2010, 51, 467–480. [Google Scholar] [CrossRef]
- Cumings, J.; Zettl, A. Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes. Science 2000, 289, 602–604. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y. Novel nano bearings constructed by physical adsorption. Sci. Rep. 2015, 5, 14539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Scheme No. | Nanobearings | Welding Velocity (m/s) | Stretching Velocity (m/s) | Temperature (K) | ||
---|---|---|---|---|---|---|
Inner Ring | Outer Ring | |||||
i | I | 2.0 | 6.0 | 10 | 30 | 300 |
II | 2.5 | |||||
III | 3.0 | |||||
IV | 3.5 | |||||
ii | 2.5 | 150 | ||||
300 | ||||||
450 | ||||||
600 | ||||||
750 | ||||||
iii | 5 | 300 | ||||
10 | ||||||
20 | ||||||
30 | ||||||
iv | 10 | 10 | ||||
20 | ||||||
30 |
Stage | Velocity | Name of Types | Count of Atoms | Fraction of Atoms (%) |
---|---|---|---|---|
After equilibrium | Initial state | Unknown | 11,642 | 20.7 |
FCC | 44,730 | 79.3 | ||
HCP | 0 | 0 | ||
After contact | V1 = 10 m/s | Unknown | 11,390 | 20.2 |
FCC | 42,782 | 75.9 | ||
HCP | 2200 | 3.9 | ||
V2 = 20 m/s | Unknown | 12,314 | 21.8 | |
FCC | 41,635 | 73.9 | ||
HCP | 2422 | 4.3 | ||
V3 = 30 m/s | Unknown | 12,430 | 22.0 | |
FCC | 40,602 | 72.0 | ||
HCP | 3366 | 6.0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, H.; Li, J.; Xian, Y.; Hu, G.; Li, X.; Xia, R. Nanoscale Assembly of Copper Bearing-Sleeve via Cold-Welding: A Molecular Dynamics Study. Nanomaterials 2018, 8, 785. https://doi.org/10.3390/nano8100785
Zhou H, Li J, Xian Y, Hu G, Li X, Xia R. Nanoscale Assembly of Copper Bearing-Sleeve via Cold-Welding: A Molecular Dynamics Study. Nanomaterials. 2018; 8(10):785. https://doi.org/10.3390/nano8100785
Chicago/Turabian StyleZhou, Hongjian, Jiejie Li, Yuehui Xian, Guoming Hu, Xiaoyong Li, and Re Xia. 2018. "Nanoscale Assembly of Copper Bearing-Sleeve via Cold-Welding: A Molecular Dynamics Study" Nanomaterials 8, no. 10: 785. https://doi.org/10.3390/nano8100785
APA StyleZhou, H., Li, J., Xian, Y., Hu, G., Li, X., & Xia, R. (2018). Nanoscale Assembly of Copper Bearing-Sleeve via Cold-Welding: A Molecular Dynamics Study. Nanomaterials, 8(10), 785. https://doi.org/10.3390/nano8100785